ignite分布式计算
在ignite中,有传统的MapReduce模型的分布式计算,也有基于分布式存储的并置计算,当数据分散到不同的节点上时,根据提供的并置键,计算会传播到数据所在的节点进行计算,再结合数据并置,相关联的数据存储在相同节点,这样可以避免在计算过程中涉及到大量的数据移动,有效保证计算的性能。
ignite分布式计算的主要特点如下:
特性 | 描述 |
---|---|
自动部署 | 计算用到的类可以自动传播,而不需要在每个节点都部署相关的类,这个可以通过配置peerClassLoadingEnabled 选项开启计算类的自动传播,但是缓存的实体类是无法自动传播的。 |
平衡加载 | 数据在加载之后会在集群中进行一个再平衡的过程,保证数据均匀分布在各个节点,当有计算在集群中执行的时候,可以根据提供的并置键定位到数据所在节点进行计算,也就是并置计算。 |
故障转移 | 当节点出现故障或者其它计算的时候,任务会自动转移到集群中的其他节点执行 |
1.分布式闭包:
Ignite计算网格可以对集群或者集群组内的任何闭包进行广播和负载平衡,包括纯Java的
runnables
和callables
闭包类型 | 功能 |
---|---|
broadcast | 将任务传播到部分指定节点或者全部节点 |
call/run | 执行单个任务或者任务集 |
apply | apply接收一个闭包和一个集合作为参数,生成与参数数量等量的任务,每个任务分别是将闭包应用在其中一个参数上,并且会返回结果集。 |
ComputeTestController.java
???/** broadCast测试*/ ???@RequestMapping("/broadcast") ???String broadcastTest(HttpServletRequest request, HttpServletResponse response) {// ???????IgniteCompute compute = ignite.compute(ignite.cluster().forRemotes()); ?//只传播远程节点 ???????IgniteCompute compute = ignite.compute(); ???????compute.broadcast(() -> System.out.println("Hello Node: " + ignite.cluster().localNode().id())); ???????return "all executed."; ???} ???/** call和run测试 */ ???@RequestMapping("/call") ???public @ResponseBody ???String callTest(HttpServletRequest request, HttpServletResponse response) { ???????Collection<IgniteCallable<Integer>> calls = new ArrayList<>(); ???????/** call */ ???????System.out.println("-----------call-----------"); ???????for(String word : "How many characters".split(" ")) { ???????????calls.add(word::length);// ???????????calls.add(() -> word.length()); ???????} ???????Collection<Integer> res = ignite.compute().call(calls); ???????int total = res.stream().mapToInt(Integer::intValue).sum(); ???????System.out.println(String.format("the total lengths of all words is [%s].", total)); ???????/** run */ ???????System.out.println("-----------run-----------"); ???????for (String word : "Print words on different cluster nodes".split(" ")) { ???????????ignite.compute().run(() -> System.out.println(word)); ???????} ???????/** async call */ ???????System.out.println("-----------async call-----------"); ???????IgniteCompute asyncCompute = ?ignite.compute().withAsync(); ???????asyncCompute.call(calls); ???????asyncCompute.future().listen(fut -> { ???????????Collection<Integer> result = (Collection<Integer>)fut.get(); ???????????int t = result.stream().mapToInt(Integer::intValue).sum(); ???????????System.out.println("Total number of characters: " + total); ???????}); ???????/** async run */ ???????System.out.println("-----------async run-----------"); ???????Collection<ComputeTaskFuture<?>> futs = new ArrayList<>(); ???????asyncCompute = ignite.compute().withAsync(); ???????for (String word : "Print words on different cluster nodes".split(" ")) { ???????????asyncCompute.run(() -> System.out.println(word)); ???????????futs.add(asyncCompute.future()); ???????} ???????futs.stream().forEach(ComputeTaskFuture::get); ???????return "all executed."; ???} ???/** apply测试 */ ???@RequestMapping("/apply") ???public @ResponseBody ???String applyTest(HttpServletRequest request, HttpServletResponse response) { ???????/** apply */ ???????System.out.println("-----------apply-----------"); ???????IgniteCompute compute = ignite.compute(); ???????Collection<Integer> res = compute.apply( ???????????????String::length, ???????????????Arrays.asList("How many characters".split(" ")) ???????); ???????int total = res.stream().mapToInt(Integer::intValue).sum(); ???????System.out.println(String.format("the total lengths of all words is [%s].", total)); ???????/** async apply */ ???????IgniteCompute asyncCompute = ignite.compute().withAsync(); ???????res = asyncCompute.apply( ???????????????String::length, ???????????????Arrays.asList("How many characters".split(" ")) ???????); ???????asyncCompute.future().listen(fut -> { ???????????int t = ((Collection<Integer>)fut.get()).stream().mapToInt(Integer::intValue).sum(); ???????????System.out.println(String.format("Total number of characters: " + total)); ???????}); ???????return "all executed."; ???}
2. MapReduce:
在ignite中MapReduce的实现是ComputeTask
,其主要方法是map()和reduce(),map()可以控制任务映射到节点的过程,而reduce()则是对最终计算结果集的一个处理。ComputeTask
有两个主要实现ComputeTaskAdapter
和ComputeTaskSplitAdapter
, 主要的区别在于ComputeTaskAdapter
需要手动实现map()方法,而ComputeTaskSplitAdapter
可以自动映射任务。
ComputeTaskAdapter:
???/**ComputeTaskAdapter*/ ???@RequestMapping("/taskMap") ???public @ResponseBody ???String taskMapTest(HttpServletRequest request, HttpServletResponse response) { ???????/**ComputeTaskMap*/ ???????int cnt = ignite.compute().execute(MapExampleCharacterCountTask.class, "Hello Ignite Enable World!"); ???????System.out.println(String.format(">>> Total number of characters in the phrase is %s.", cnt)); ???????return "all executed."; ???} ???private static class MapExampleCharacterCountTask extends ComputeTaskAdapter<String, Integer> { ???????/**节点映射*/ ???????@Override ???????public Map<? extends ComputeJob, ClusterNode> map(List<ClusterNode> nodes, String arg) throws IgniteException { ???????????Map<ComputeJob, ClusterNode> map = new HashMap<>(); ???????????Iterator<ClusterNode> it = nodes.iterator(); ???????????for (final String word : arg.split(" ")) { ???????????????// If we used all nodes, restart the iterator. ???????????????if (!it.hasNext()) { ???????????????????it = nodes.iterator(); ???????????????} ???????????????ClusterNode node = it.next(); ???????????????map.put(new ComputeJobAdapter() { ???????????????????@Override ???????????????????public Object execute() throws IgniteException { ???????????????????????System.out.println("-------------------------------------"); ???????????????????????System.out.println(String.format(">>> Printing [%s] on this node from ignite job.", word)); ???????????????????????return word.length(); ???????????????????} ???????????????}, node); ???????????} ???????????return map; ???????} ???????/**结果汇总*/ ???????@Override ???????public Integer reduce(List<ComputeJobResult> results) throws IgniteException { ???????????int sum = 0; ???????????for (ComputeJobResult res : results) { ???????????????sum += res.<Integer>getData(); ???????????} ???????????return sum; ???????} ???}
运行结果:
------------------------------------->>> Printing [Ignite] on this node from ignite job.------------------------------------->>> Printing [World!] on this node from ignite job.>>> Total number of characters in the phrase is 23.
ComputeTaskSplitAdapter:
???/**ComputeTaskSplitAdapter*/ ???@RequestMapping("/taskSplit") ???public @ResponseBody ???String taskSplitTest(HttpServletRequest request, HttpServletResponse response) { ???????/**ComputeTaskSplitAdapter(自动映射) */ ???????int result = ignite.compute().execute(SplitExampleDistributedCompute.class, null); ???????System.out.println(String.format(">>> result: [%s]", result)); ???????return "all executed."; ???} ???private static class SplitExampleDistributedCompute extends ComputeTaskSplitAdapter<String, Integer> { ???????@Override ???????protected Collection<? extends ComputeJob> split(int gridSize, String arg) throws IgniteException { ???????????Collection<ComputeJob> jobs = new LinkedList<>(); ???????????jobs.add(new ComputeJobAdapter() { ???????????????@Override ???????????????public Object execute() throws IgniteException {// ???????????????????IgniteCache<Long, Student> cache = Ignition.ignite().cache(CacheKeyConstant.STUDENT); ???????????????????IgniteCache<Long, BinaryObject> cache = Ignition.ignite().cache(CacheKeyConstant.STUDENT).withKeepBinary(); ???????????????????/**普通查询*/ ???????????????????String sql_query = "name = ? and email = ?";// ???????????????????SqlQuery<Long, Student> cSqlQuery = new SqlQuery<>(Student.class, sql_query); ???????????????????SqlQuery<Long, BinaryObject> cSqlQuery = new SqlQuery<>(Student.class, sql_query); ???????????????????cSqlQuery.setReplicatedOnly(true).setArgs("student_54", "student_54gmail.com");// ?????????????????List<Cache.Entry<Long, Student>> result = cache.query(cSqlQuery).getAll(); ???????????????????List<Cache.Entry<Long, BinaryObject>> result = cache.query(cSqlQuery).getAll(); ???????????????????System.out.println("--------------------"); ???????????????????result.stream().map(x -> { ???????????????????????Integer studId = x.getValue().field("studId"); ???????????????????????String name = x.getValue().field("name"); ???????????????????????return String.format("name=[%s], studId=[%s].", name, studId); ???????????????????}).forEach(System.out::println); ???????????????????System.out.println(String.format("the query size is [%s].", result.size())); ???????????????????return result.size(); ???????????????} ???????????}); ???????????return jobs; ???????} ???????@Override ???????public Integer reduce(List<ComputeJobResult> results) throws IgniteException { ???????????int sum = results.stream().mapToInt(x -> x.<Integer>getData()).sum(); ???????????return sum; ???????} ???}
运行结果:
--------------------name=[student_54], studId=[54].the query size is [1].>>> result: [1]
MapReduce的局限性:
MapReduce适合解决并行和批处理的场景,不适合串行,迭代和递归一类无法并行和分割任务的场景。
分布式计算存在的问题以及注意点
??在使用ignite的分布式计算功能的时候,如果用到了缓存, 并且缓存value不是平台类型(java基础类型),则需要考虑反序列化的问题。
现有两种解决方案:
- 部署缓存实体类包到ignite节点
缓存实体类得实现Serializable接口,并且得指定serialVersionUID
serialVersionUID表示实体类的当前版本,每个实现Serializable接口的类都有,如果没有的设置该值,java序列化机制会帮你默认生成一个。最好在使用serializable接口时,设定serialVersionUID为某个值,不然当在传输的某一端修改实体类时,serialVersionUID会被虚拟机设置成一个新的值,造成两端的serialVersionUID不一致会发生异常。
public class Student implements Serializable { ???private static final long serialVersionUID = -5941489737545326242L; ???....}
将实体类打包成普通jar包,并放在$IGNITE_HOME/libs/路径下面:
注意:打包的时候不能打包成spring-boot的可执行包,要打包成普通jar包,这样相关类才能正常加载。当然如果集群里的节点均为应用节点,则可以不用考虑这个问题。
使用二进制对象对缓存进行操作
Ignite默认使用反序列化值作为最常见的使用场景,要启用
BinaryObject
处理,需要获得一个IgniteCache
的实例然后使用withKeepBinary()
方法。启用之后,如果可能,这个标志会确保从缓存返回的对象都是BinaryObject
格式的。
IgniteCache<Long, BinaryObject> cache = ignite.cache("student").withKeepBinary(); BinaryObject obj = cache.get(k); ?//获取二进制对象 String name = obj.<String>field("name"); ?//读取二进制对象属性值<使用field方法>
3.并置计算:
affinityCall(...)
和affinityRun(...)
方法使作业和缓存着数据的节点位于一处,换句话说,给定缓存名字和关系键,这些方法会试图在指定的缓存中定位键所在的节点,然后在那里执行作业。
并置的两种类型以及区别:
并置 | 特点 |
---|---|
数据并置 | 将相关的缓存数据并置到一起,确保其所有键会缓存在同一个节点上,避免节点间数据移动产生的网络开销。 |
计算并置 | 根据关系键和缓存名称,定位关系键所在节点,并在该节点执行作业单元。 |
ComputeTestController.class
???/**并置计算测试*/ ???@RequestMapping("/affinity") ???public @ResponseBody ???String affinityTest(HttpServletRequest request, HttpServletResponse response) { ???????/** affinityRun call */ ???????System.out.println("-----------affinityRun call-----------"); ???????IgniteCompute compute = ignite.compute();// ???????IgniteCompute compute = ignite.compute(ignite.cluster().forRemotes()); ???????for(int key = 0; key < 100; key++) {// ???????????final long k = key; ???????????//生成随机k值 ???????????final long k = IntStream.generate(() -> (int)(System.nanoTime() % 100)).limit(1).findFirst().getAsInt(); ???????????compute.affinityRun(CacheKeyConstant.STUDENT, k, () -> { ???????????????IgniteCache<Long, BinaryObject> cache = ignite.cache(CacheKeyConstant.STUDENT).withKeepBinary(); ???????????????BinaryObject obj = cache.get(k); ???????????????if(obj!=null) { ???????????????????System.out.println(String.format("Co-located[key= %s, value= %s]", k, obj.<String>field("name"))); ???????????????} ???????????}); ???????} ???????IgniteCache<Long, BinaryObject> cache = ignite.cache(CacheKeyConstant.STUDENT).withKeepBinary(); ???????cache.forEach(lo -> compute.affinityRun(CacheKeyConstant.STUDENT, lo.getKey(), () -> { ???????????System.out.println(lo.getValue().<String>field("name")); ???????})); ???????return "all executed."; ???}
运行结果:
-----------affinityRun call-----------student_495student_496student_498...
至此,ignite分布式计算完毕。
apache ignite系列(五):分布式计算
原文地址:https://www.cnblogs.com/cord/p/9431867.html