分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 运营维护

【题解】JSOIWC2019 Round 5

发布时间:2023-09-06 02:32责任编辑:胡小海关键词:暂无标签

题面:

题解:

T1:

算法1:

枚举每个灯塔的方向,并分别判断是否有解。时间复杂度O(K*4^K)。

预计得分:50-70分

算法2:

不难发现,当k≥4的时候一定有解,将最靠左的两个下面的朝右上、上面的朝右下。最右边的两个做同样的处理。不难发现这样一定可以覆盖整个场地。

与算法1结合后可以期望获得100分

# include <bits/stdc++.h>using namespace std;namespace Base{ ???# define mr make_pair ???typedef long long ll; ???typedef double db; ???const int inf = 0x3f3f3f3f, INF = 0x7fffffff; ???const ll ?infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll; ???template<typename T> void read(T &x){ ???????x = 0; int fh = 1; double num = 1.0; char ch = getchar(); ???????while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); } ???????while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); } ???????if (ch == '.'){ ???????????ch = getchar(); ???????????while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();} ???????} ???????x = x * fh; ???} ???template<typename T> void chmax(T &x, T y){x = x < y ? y : x;} ???template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}}using namespace Base;const int K = 110;struct Point{ ???int x, y;}p[K], t[K], a[K], b[K];int k, n, mu[K], flag;void check(){ ???int lim = (1 << k); ???ll sum = 0; ???for (int i = 1; i < lim; i++){ ???????int num = 0; ???????int ax = 0, ay = 0, bx = n - 1, by = n - 1; ???????for (int j = 1; j <= k; j++) ???????????if ((i & (1 << (j - 1))) != 0){ ???????????????num++; ???????????????ax = max(a[j].x, ax); ???????????????ay = max(a[j].y, ay); ???????????????bx = min(b[j].x, bx); ???????????????by = min(b[j].y, by); ???????????} ???????if (ax <= bx && ay <= by) ???????????sum = sum + mu[num] * 1ll * (bx - ax) * (by - ay); ???} ???if (sum == 1ll * (n - 1) * (n - 1)) flag = true;}void dfs(int x){ ???if (x > k){ ???????check(); ???????return; ???} ???for (int i = 0; i < 4; i++){ ???????a[x].x = min(p[x].x, t[i].x); ???????a[x].y = min(p[x].y, t[i].y); ???????b[x].x = max(p[x].x, t[i].x); ???????b[x].y = max(p[x].y, t[i].y); ???????dfs(x + 1); ???} ??}int main(){ ???freopen("lighting.in", "r", stdin); ???freopen("lighting.out", "w", stdout); ???mu[0] = -1; ???for (int i = 1; i < K; i++) mu[i] = mu[i - 1] * (-1); ???int op; read(op); ???while (op--){ ???????read(k); read(n); ???????for (int i = 1; i <= k; i++) ???????????read(p[i].x), read(p[i].y); ???????flag = false; ???????if (k > 4) { ???????????printf("yes\n"); ???????????continue; ???????} ???????t[0].x = 0, t[0].y = 0; ????????t[1].x = n - 1, t[1].y = 0; ???????t[2].x = 0, t[2].y = n - 1; ???????t[3].x = n - 1, t[3].y = n - 1; ???????dfs(1); ???????if (flag == true) ???????????printf("yes\n"); ???????????else printf("no\n"); ???} ???return 0;}

T2:

算法0:

对于如何还原串中的一段,可以用类似线段树查询的方式做,时间复杂度O(N+R-L)。

算法1:

枚举每个玩家的出拳方法。时间复杂度O(3^(2^N)*(2^N))。

预计得分:20分

算法2:

不难发现,当我们确定最后的获胜者后,我们可以倒推出每一轮比赛的情况。同时我们可以正着推出每一层每个出拳方式的字典序大小关系。所以,当我们确定了最后的情况。我们可以花O(2^N)的时间还原出初始情况。

预计得分:40分

算法3:

其实我们不用还原出整个过程,只要知道底层每种出拳方式有多少个即可。用高精度计算即可。

预计得分:70分(其实取模就可以过了)

算法4:

再次观察后,我们发现。在一层中,每种出拳方式的数量的差不大于1。当我们有差和层数时,我们可以O(1)判断一个状态是否合法。

预计得分:100分

# include <bits/stdc++.h>namespace Base{ ???# define mr make_pair ???typedef long long ll; ???typedef double db; ???const int inf = 0x3f3f3f3f, INF = 0x7fffffff; ???const ll ?infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll; ???template<typename T> void read(T &x){ ???????x = 0; int fh = 1; double num = 1.0; char ch = getchar(); ???????while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); } ???????while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); } ???????if (ch == '.'){ ???????????ch = getchar(); ???????????while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();} ???????} ???????x = x * fh; ???} ???template<typename T> void chmax(T &x, T y){x = x < y ? y : x;} ???template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}}using namespace Base;const int N = 300010, P = 998244353;struct INT{ ???int n[N], len; ???void GetFromSt(char *st){ ???????len = strlen(st); ???????for (int i = 0; i < len; i++) n[i] = st[len - i - 1] - '0'; ???}}num[4], tmp;bool operator >=(INT &x, INT &y){ ???if (x.len > y.len) return true; ???if (x.len < y.len) return false; ???for (int i = x.len - 1; i >= 0; i--){ ???????if (x.n[i] > y.n[i]) return true; ???????if (x.n[i] < y.n[i]) return false; ???} ???return true;}INT operator -(INT a, INT &b){ ???for (int i = 0; i < a.len; i++) ???????a.n[i] -= b.n[i]; ???for (int i = 0; i < a.len; i++) ???????if (a.n[i] < 0) a.n[i] += 10, a.n[i + 1] -= 1; ???while (a.len > 0 && a.n[a.len - 1] == 0) a.len--; ???return a;}int n, op;const int to[] = {-1, 0, 2, 1, 4, 5, 3, -1};ll h[N][3], mul[N];int rk[N][3], tnp[3];char st[N], mp[3], l[N], r[N];void error(){ ???printf("-1\n"); ???exit(0);}void solve(int id, int now, int tag){ ???if (id == 0){ ???????printf("%c", mp[now]); ???????return; ???} ???int nowl = now, nowr = (now + 1) % 3; ???if (rk[id - 1][nowl] > rk[id - 1][nowr]) std::swap(nowl, nowr); ???if ((tag & 1) != 0){ ???????if (r[id] == '0' && (tag & 2) == 0) ???????????solve(id - 1, nowl, 1); ???????????else solve(id - 1, nowl, 3); ???} ???else { ???????if (l[id] == '0'){ ???????????if (r[id] == '0' && (tag & 2) == 0) ???????????????solve(id - 1, nowl, 0); ???????????????else solve(id - 1, nowl, 2); ???????} ???} ???if ((tag & 2) != 0){ ???????if (l[id] == '1' && (tag & 1) == 0) ???????????solve(id - 1, nowr, 2); ???????????else solve(id - 1, nowr, 3); ???} ???else { ???????if (r[id] == '1'){ ???????????if (l[id] == '1' && (tag & 1) == 0) ???????????????solve(id - 1, nowr, 0); ???????????????else solve(id - 1, nowr, 1); ???????} ???}}int main(){ ???freopen("rsp.in", "r", stdin); ???freopen("rsp.out", "w", stdout); ???read(n); read(op); ???scanf("\n%s", st); num[1].GetFromSt(st); ???scanf("\n%s", st); num[2].GetFromSt(st); ???scanf("\n%s", st); num[0].GetFromSt(st); ???num[3] = num[0]; tmp.len = 1; tmp.n[0] = 2; ???if (num[3] >= num[1]) num[3] = num[1]; ???if (num[3] >= num[2]) num[3] = num[2]; ???num[0] = num[0] - num[3]; if (num[0] >= tmp) error(); ???num[1] = num[1] - num[3]; if (num[1] >= tmp) error(); ???num[2] = num[2] - num[3]; if (num[2] >= tmp) error(); ???int tag = (num[0].n[0]) + (num[1].n[0] << 1) + (num[2].n[0] << 2); ???tag = to[tag]; ???tag = ((tag - n) % 6 + 6) % 6; ???tag = tag / 2; ???rk[0][0] = 0, rk[0][1] = 1, rk[0][2] = 2; ???h[0][0] = 'P', h[0][1] = 'R', h[0][2] = 'S'; mul[0] = 233; ???for (int i = 1; i <= n; i++){ ???????mul[i] = mul[i - 1] * mul[i - 1] % P; ???????rk[i][0] = std::min(rk[i - 1][0], rk[i - 1][1]) * 3 + std::max(rk[i - 1][0], rk[i - 1][1]); ???????rk[i][1] = std::min(rk[i - 1][1], rk[i - 1][2]) * 3 + std::max(rk[i - 1][1], rk[i - 1][2]); ???????rk[i][2] = std::min(rk[i - 1][2], rk[i - 1][0]) * 3 + std::max(rk[i - 1][2], rk[i - 1][0]); ???????for (int j = 0; j < 3; j++) tnp[j] = (rk[i][j] > rk[i][0]) + (rk[i][j] > rk[i][1]) + (rk[i][j] > rk[i][2]); ???????for (int j = 0; j < 3; j++){ ???????????rk[i][j] = tnp[j]; ???????????if (rk[i - 1][j] < rk[i - 1][(j + 1) % 3]) ????????????????h[i][j] = (h[i - 1][j] + h[i - 1][(j + 1) % 3] * mul[i - 1]) % P; ???????????????else h[i][j] = (h[i - 1][(j + 1) % 3] + h[i - 1][j] * mul[i - 1]) % P; ???????} ???} ???if (op != 2) printf("%lld\n", h[n][tag]); ???if (op == 1) exit(0); ???scanf("\n%s", l + 1); ???for (int i = 1; i <= n / 2; i++) std::swap(l[i], l[n - i + 1]); ???scanf("\n%s", r + 1); ???for (int i = 1; i <= n / 2; i++) std::swap(r[i], r[n - i + 1]); ???mp[0] = 'P', mp[1] = 'R', mp[2] = 'S'; ???solve(n, tag, 0); ???printf("\n"); ???return 0;}

T3:

算法1:

k=1时随便做做,预计得分0-10

算法2:

n≤1000, k≤4,dp统计答案,复杂度O(nvk),

预计得分10。

以下所有多项式的均为卷积(不会啊qaq)。

算法3:

考虑生成函数,以Vi为下标,数量为系数建立多项式f1,那么f1f1就是选两个的方案数。但是这样会有重复,(a,b)与(b,a)会算2次,同时会把(a,a)算进来,那么我们建立多项式f2表示一个物品取两次。那么当k=2时,ans=(f1f1-f2)/2;

预计额外得分20

算法4:

考虑算法3的拓展,记多项式f3为一个物品取三次,那么根据容斥原理,k=3时ans=(f1f1f1-3f2f1+2f3)/6,f2f1表示其中有两个或以上的物品相同,那么在f1f1f1中,一个f2f1会出现三次,即(a,a,b),(a,b,a),(b,a,a),f2f1中也会有f3出现,所以要减去三个f3,但是f1f1f1中本身还有一个f3所以还要减去一个。

预计额外得分30

算分5:

考虑进一步拓展,形式无非就f1f1f1f1,f2f2,f3f1,f2f1f1,f4这几种情况,剩下的问题就是配容斥系数,因为k只有4容斥系数可以手算出来。最终答案是:
Ans=(f1
f1f1f1+8f3f1+3f2f2-6f2f1f1-6f4)/24

预计额外得分40

将算法1,3,4,5拼在一起即可得到满分,时间复杂度O(V log V)

# include <bits/stdc++.h># define ???ll ?????long longusing namespace std;const int T = 100001, N = 600001; ?ll ans[N];int read(){ ???int tmp=0, fh=1; char ch=getchar(); ???while (ch<'0'||ch>'9'){if (ch=='-') fh=-1; ch=getchar();} ???while (ch>='0'&&ch<='9'){tmp=tmp*10+ch-'0'; ch=getchar();} ???return tmp*fh;}namespace Transform{ ???const int P = 998244353, G = 3; ???int power(int x, int y){ ???????int i = x; x = 1; ???????while (y > 0){ ???????????if (y % 2 == 1) x = 1ll * i * x % P; ???????????i = 1ll * i * i % P; ???????????y /= 2; ???????} ???????return x; ???} ???void NTT(int *a, int l, int tag){ ???????for (int i = 0, j = 0; i < l; i++){ ???????????if (i > j) swap(a[i], a[j]); ???????????for (int k = (l >> 1); (j ^= k) < k; k >>= 1); ???????} ???????for (int i = 1; i < l; i <<= 1){ ???????????int wn = power(G, (P - 1) / (i * 2)); ???????????if (tag == -1) wn = power(wn, P - 2); ???????????for (int j = 0; j < l; j += i + i){ ???????????????int w = 1; ???????????????for (int k = 0; k < i; k++, w = 1ll * w * wn % P){ ???????????????????int x = a[k + j], y = 1ll * w * a[k + j + i] % P; ???????????????????a[k + j] = (x + y) % P, a[k + j + i] = (x - y + P) % P; ????????????????} ???????????} ???????} ???????if (tag == -1){ ???????????int in = power(l, P - 2); ???????????for (int i = 0; i < l; i++) a[i] = 1ll * a[i] * in % P; ???????} ???}}using namespace Transform; int num1[N], num2[N], num3[N], num4[N], now1[N], now2[N], now3[N], now4[N], len, nn, n, m, k;void print(){ ???int sum = 0; ????for (int i = 0; i < N; i++) ???????sum = sum ^ (1ll * ans[i] * i % P); ???printf("%d\n", sum); ?}int main(){ ???freopen("energy.in","r",stdin); ???freopen("energy.out","w",stdout); ???int inv2 = power(2, P - 2), inv6 = power(6, P - 2), inv24 = power(24, P - 2); ???n = read(), k = read(); ????for (int i = 1; i <= n; i++) num1[read()]++; ???for (int i = 1; i <= T; i++) num2[i * 2]= num1[i], num3[i * 3] = num1[i], num4[i * 4] = num1[i]; ???len = T * 4 + 1; ???nn = 1; while (nn < len) nn <<= 1; ???if (k == 1){ ???????for (int i = 0; i < nn; i++) ans[i] = num1[i]; ???????print(); ???????return 0; ???} ???????if (k == 2){ ???????NTT(num1, nn, 1); ???????for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P; ???????NTT(now1, nn, -1); ????????for (int i = 0; i < nn; i++) ans[i] = 1ll * (now1[i] - num2[i] + P) * inv2 % P; ???????print(); ???????return 0; ???} ??????????if (k == 3){ ???????NTT(num1, nn, 1); NTT(num2, nn, 1); ???????for (int i = 0; i < nn; i++) now2[i] = 1ll * num2[i] * num1[i] % P; ???????NTT(now2, nn, -1); ???????for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P; ???????NTT(now1, nn, -1); ???????for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] - 3ll * now2[i] + 2ll * num3[i]) % P * inv6 % P + P) % P; ???????print(); ???????return 0; ???} ???????if (k == 4){ ???????NTT(num1, nn, 1); NTT(num2, nn, 1); NTT(num3, nn, 1); ???????for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P * num1[i] % P; ???????NTT(now1, nn, -1); ???????for (int i = 0; i < nn; i++) now2[i] = 1ll * num3[i] * num1[i] % P; ???????NTT(now2, nn, -1); ???????for (int i = 0; i < nn; i++) now3[i] = 1ll * num2[i] * num2[i] % P; ???????NTT(now3, nn, -1); ???????for (int i = 0; i < nn; i++) now4[i] = 1ll * num2[i] * num1[i] % P * num1[i] % P; ???????NTT(now4, nn, -1); ???????for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] + 8ll * now2[i] + 3ll * now3[i] - 6ll * now4[i] - 6ll *num4[i]) * inv24 % P + P) % P; ???????print(); ???????return 0; ???} ???return 0;}

我觉得这很不提高膜你赛qaq(还是我太菜了)

【题解】JSOIWC2019 Round 5

原文地址:https://www.cnblogs.com/yzhang-rp-inf/p/10343189.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved