分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 运营维护

TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu

发布时间:2023-09-06 01:39责任编辑:董明明关键词:暂无标签
import tensorflow as tfimport numpy as np ????def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): ???# add one more layer and return the output of this layer ???layer_name = ‘layer%s‘ % n_layer ???with tf.name_scope(layer_name): ???????with tf.name_scope(‘Jason_niu_weights‘): ???????????Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=‘W‘) ???????????tf.summary.histogram(layer_name + ‘/weights‘, Weights) ???????with tf.name_scope(‘Jason_niu_biases‘): ???????????biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name=‘b‘) ???????????tf.summary.histogram(layer_name + ‘/biases‘, biases) ????????with tf.name_scope(‘Jason_niu_Wx_plus_b‘): ???????????Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases) ???????if activation_function is None: ???????????outputs = Wx_plus_b ???????else: ???????????outputs = activation_function(Wx_plus_b, ) ???????tf.summary.histogram(layer_name + ‘/outputs‘, outputs) ????????return outputs# Make up some real datax_data = np.linspace(-1, 1, 300)[:, np.newaxis]noise = np.random.normal(0, 0.05, x_data.shape)y_data = np.square(x_data) - 0.5 + noise# define placeholder for inputs to networkwith tf.name_scope(‘Jason_niu_inputs‘): ???xs = tf.placeholder(tf.float32, [None, 1], name=‘x_input‘) ???ys = tf.placeholder(tf.float32, [None, 1], name=‘y_input‘)# add hidden layerl1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)# add output layerprediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)# the error between prediciton and real datawith tf.name_scope(‘Jason_niu_loss‘): ???loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), ???????????????????????????????????????reduction_indices=[1])) ???tf.summary.scalar(‘Jason_niu_loss‘, loss) ?with tf.name_scope(‘Jason_niu_train‘): ???train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)sess = tf.Session()merged = ?tf.summary.merge_all() ?writer = tf.summary.FileWriter("logs3/", sess.graph)# important stepsess.run(tf.global_variables_initializer())for i in range(1000): ?????sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) ???if i % 50 == 0: ??????????????????????????????????????????????????result = sess.run(merged,feed_dict={xs: x_data, ys: y_data}) ???????writer.add_summary(result, i) ????????????????????????

TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu

原文地址:https://www.cnblogs.com/yunyaniu/p/8341994.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved