分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 网页技术

[神经网络]一步一步使用Mobile-Net完成视觉识别(四)

发布时间:2023-09-06 02:20责任编辑:胡小海关键词:暂无标签

1.环境配置

2.数据集获取

3.训练集获取

4.训练

5.调用测试训练结果

6.代码讲解

  本文是第四篇,下载预训练模型并训练自己的数据集。

前面我们配置好了labelmap,下面我们开始下载训练好的模型。

http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz

下载下来解压,然后我们配置下pipeline文件

需要改动的地方有

num_classes:这个是我们的分类数,我们只有red和blue就填2

batch_size:这里我填的是2,batch_size过大,每次放入内存中训练的数据就会越多,如果你的内存不够大且数据量比较小,就填小点,我的是8G内存,图片也不过一两千张。

initial_learning_rate:学习速率,可以不修改。

fine_tune_checkpoint:输入我们下载的模型的ckpt文件的绝对路径

label_map_path:配置好的labelmap的绝对路径

tf_record_input_reader的input_path:填之前生成好的tfrecord文件的绝对路径

我的配置为以下文件:

model { ?ssd { ???num_classes: 2 ???image_resizer { ?????fixed_shape_resizer { ???????height: 300 ???????width: 300 ?????} ???} ???feature_extractor { ?????type: "ssd_mobilenet_v2" ?????depth_multiplier: 1.0 ?????min_depth: 16 ?????conv_hyperparams { ???????regularizer { ?????????l2_regularizer { ???????????weight: 3.99999989895e-05 ?????????} ???????} ???????initializer { ?????????truncated_normal_initializer { ???????????mean: 0.0 ???????????stddev: 0.0299999993294 ?????????} ???????} ???????activation: RELU_6 ???????batch_norm { ?????????decay: 0.999700009823 ?????????center: true ?????????scale: true ?????????epsilon: 0.0010000000475 ?????????train: true ???????} ?????} ?????use_depthwise: true ???} ???box_coder { ?????faster_rcnn_box_coder { ???????y_scale: 10.0 ???????x_scale: 10.0 ???????height_scale: 5.0 ???????width_scale: 5.0 ?????} ???} ???matcher { ?????argmax_matcher { ???????matched_threshold: 0.5 ???????unmatched_threshold: 0.5 ???????ignore_thresholds: false ???????negatives_lower_than_unmatched: true ???????force_match_for_each_row: true ?????} ???} ???similarity_calculator { ?????iou_similarity { ?????} ???} ???box_predictor { ?????convolutional_box_predictor { ???????conv_hyperparams { ?????????regularizer { ???????????l2_regularizer { ?????????????weight: 3.99999989895e-05 ???????????} ?????????} ?????????initializer { ???????????truncated_normal_initializer { ?????????????mean: 0.0 ?????????????stddev: 0.0299999993294 ???????????} ?????????} ?????????activation: RELU_6 ?????????batch_norm { ???????????decay: 0.999700009823 ???????????center: true ???????????scale: true ???????????epsilon: 0.0010000000475 ???????????train: true ?????????} ???????} ???????min_depth: 0 ???????max_depth: 0 ???????num_layers_before_predictor: 0 ???????use_dropout: false ???????dropout_keep_probability: 0.800000011921 ???????kernel_size: 3 ???????box_code_size: 4 ???????apply_sigmoid_to_scores: false ???????use_depthwise: true ?????} ???} ???anchor_generator { ?????ssd_anchor_generator { ???????num_layers: 6 ???????min_scale: 0.20000000298 ???????max_scale: 0.949999988079 ???????aspect_ratios: 1.0 ???????aspect_ratios: 2.0 ???????aspect_ratios: 0.5 ???????aspect_ratios: 3.0 ???????aspect_ratios: 0.333299994469 ?????} ???} ???post_processing { ?????batch_non_max_suppression { ???????score_threshold: 0.300000011921 ???????iou_threshold: 0.600000023842 ???????max_detections_per_class: 100 ???????max_total_detections: 100 ?????} ?????score_converter: SIGMOID ???} ???normalize_loss_by_num_matches: true ???loss { ?????localization_loss { ???????weighted_smooth_l1 { ???????} ?????} ?????classification_loss { ???????weighted_sigmoid { ???????} ?????} ?????hard_example_miner { ???????num_hard_examples: 3000 ???????iou_threshold: 0.990000009537 ???????loss_type: CLASSIFICATION ???????max_negatives_per_positive: 3 ???????min_negatives_per_image: 3 ?????} ?????classification_weight: 1.0 ?????localization_weight: 1.0 ???} ?}}train_config { ?batch_size: 2 ?data_augmentation_options { ???random_horizontal_flip { ???} ?} ?data_augmentation_options { ???ssd_random_crop { ???} ?} ?optimizer { ???rms_prop_optimizer { ?????learning_rate { ???????exponential_decay_learning_rate { ?????????initial_learning_rate: 0.00400000018999 ?????????decay_steps: 800720 ?????????decay_factor: 0.949999988079 ???????} ?????} ?????momentum_optimizer_value: 0.899999976158 ?????decay: 0.899999976158 ?????epsilon: 1.0 ???} ?} ?fine_tune_checkpoint: "/home/xueaoru/models/research/ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt" ?num_steps: 200000 ?fine_tune_checkpoint_type: "detection"}train_input_reader { ?label_map_path: "/home/xueaoru/models/research/car_label_map.pbtxt" ?tf_record_input_reader { ???input_path: "/home/xueaoru/models/research/train.record" ?}}eval_config { ?num_examples: 60 ?max_evals: 10 ?use_moving_averages: false}eval_input_reader { ?label_map_path: "/home/xueaoru/models/research/car_label_map.pbtxt" ?shuffle: true ?num_readers: 1 ?tf_record_input_reader { ???input_path: "/home/xueaoru/models/research/test.record" ?}}

在models/research目录下执行以下命令:

python object_detection/model_main.py ????--pipeline_config_path=/home/xueaoru/models/research/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config ????--num_train_steps=200000 ????--sample_1_of_n_eval_examples=25 ????--alsologtostderr ????--model_dir=/home/xueaoru/models/research/car_data

其中pipeline_config_path为之前配置好的pipeline的绝对路径

num_train_steps为训练步数

sample_1_of_n_eval_examples为每多少个验证数据抽样一次

alsologtostderr输出std错误信息

model_dir输出训练过程中的数据的存放文件夹



执行完以上命令之后,基本上训练就开始了,我们只需要通过tensorboard来看看训练效果就可以了

tensorboard --logdir car_data

打开输出的地址:

就可以看到训练效果啦

等到差不多收敛了,我们就可以输出我们的模型了

命令行输入以下命令:

python object_detection/export_inference_graph.py --input_type image_tensor --pipeline_config_path /home/xueaoru/models/research/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config --trained_checkpoint_prefix /home/xueaoru/models/research/car_data/model.ckpt-87564 --output_directory /home/xueaoru/models/research/inference_graph_v2

配置基本上跟上面差不多,改改路径即可。

然后我们就在inference_graph_v2目录下拿到了训练后的模型了。

[神经网络]一步一步使用Mobile-Net完成视觉识别(四)

原文地址:https://www.cnblogs.com/aoru45/p/9868167.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved