分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 网页技术

『MXNet』第十二弹_再谈新建计算节点

发布时间:2023-09-06 02:16责任编辑:蔡小小关键词:暂无标签

上一节我们已经谈到了计算节点,但是即使是官方文档介绍里面相关内容也过于简略,我们使用Faster-RCNN代码中的新建节点为例,重新介绍一下新建节点的调用栈。

1、调用新建节点

参数分为三部分,op_type是节点名称,对应于辅助class的装饰器的输入;其他参数一部分传递给辅助class的初始化函数(这部分参数的虚参名和初始化函数的需参名要对应上),一部分直接作为一个list传给节点定义class的forward函数的in_data参数。

group = mx.symbol.Custom(rois=rois, ????????????????????# 2000*5的roi信息,CustomOpProp无此参数 ????????????????????????gt_boxes=gt_boxes, ????????????# n*5的ground truth信息,n表示object数量,CustomOpProp无此参数 ????????????????????????op_type=‘proposal_target‘, ????# <-----对应辅助节点装饰器参数 ????????????????????????# CustomOp,CustomOpProp初始化参数 ????????????????????????num_classes=num_classes, ??????# num_classes是实际要分类的类别数加上背景类 ????????????????????????batch_images=rcnn_batch_size, ?# 1 ????????????????????????batch_rois=rcnn_batch_rois, ???# 128 ????????????????????????fg_fraction=rcnn_fg_fraction, ?#s 0.25,正样本所占的比例 ????????????????????????fg_overlap=rcnn_fg_overlap, ???# 0.5 ????????????????????????box_stds=rcnn_bbox_stds ???????# (0.1, 0.1, 0.2, 0.2) ????????????????????????)

2、建立辅助class:CustomOpProp

本部分的class方法参数固定,不可以随意修改

@mx.operator.register(‘proposal_target‘) ?# <-----对应调用的op_typeclass ProposalTargetProp(mx.operator.CustomOpProp): ???def __init__(self, num_classes=‘21‘, batch_images=‘1‘, batch_rois=‘128‘, fg_fraction=‘0.25‘, ?# 接受上面调用的后5个参数 ????????????????fg_overlap=‘0.5‘, box_stds=‘(0.1, 0.1, 0.2, 0.2)‘): ???????super(ProposalTargetProp, self).__init__(need_top_grad=False) ????????????????# <-----本节点是否需要后面的梯度 ???????self._num_classes = int(num_classes) ?????????????????????????????????????????# num_classes是实际要分类的类别数加上背景类 ???????self._batch_images = int(batch_images) ???????????????????????????????????????# 1 ???????self._batch_rois = int(batch_rois) ???????????????????????????????????????????# 128 ???????self._fg_fraction = float(fg_fraction) ???????????????????????????????????????# 0.25,正样本所占的比例 ???????self._fg_overlap = float(fg_overlap) ?????????????????????????????????????????# 0.5 ???????self._box_stds = tuple(np.fromstring(box_stds[1:-1], dtype=float, sep=‘,‘)) ??# (0.1, 0.1, 0.2, 0.2) ???def list_arguments(self): ???????return [‘rois‘, ‘gt_boxes‘] ?# 向前传播需要的参数 ???def list_outputs(self): ???????return [‘rois_output‘, ‘label‘, ‘bbox_target‘, ‘bbox_weight‘] ?# 向前传播输出参数名 ???def infer_shape(self, in_shape): ???????assert self._batch_rois % self._batch_images == 0, ????????????‘BATCHIMAGES {} must devide BATCH_ROIS {}‘.format(self._batch_images, self._batch_rois) ???????rpn_rois_shape = in_shape[0] ???????gt_boxes_shape = in_shape[1] ???????output_rois_shape = (self._batch_rois, 5) ???????label_shape = (self._batch_rois, ) ???????bbox_target_shape = (self._batch_rois, self._num_classes * 4) ???????bbox_weight_shape = (self._batch_rois, self._num_classes * 4) ???????return [rpn_rois_shape, gt_boxes_shape], ???????????????[output_rois_shape, label_shape, bbox_target_shape, bbox_weight_shape] ???def create_operator(self, ctx, shapes, dtypes): ?# 返回初始化了的自定义节点类 ???????return ProposalTargetOperator(self._num_classes, self._batch_images, self._batch_rois, self._fg_fraction, ?????????????????????????????????????self._fg_overlap, self._box_stds) ???def declare_backward_dependency(self, out_grad, in_data, out_data): ???????return []

__init__

初始化方法会首先从调用位置接收参数,调用位置的op_type参数用于指定选用哪个辅助class,然后其他参数优先传入本初的__init__方法,剩下的没有和本方法参数对应上的参数会做为节点class的forward方法的in_data参数。

下面一行表示本节点不需要接收后面层的梯度,对应到节点定义class的backward方法,out_grad参数就不应在函数体内调用了,in_grad(向前传播回去的梯度)计算完全依赖本层的参数。

super(ProposalTargetProp, self).__init__(need_top_grad=False)

list_arguments

使用list_arguments()方法返回时,输出并不直接就是上述代码list_arguments方法的return列表,实际上会将整个net结构截至的本节点为止,全部的variable变量名称输入。

对于本节点group,定义输入有两个:

rois=rois  # 2000*5的roi信息,CustomOpProp无此参数
????????????????????????gt_boxes=gt_boxes

其中gt_boxes变量本身是个variable(定义为gt_boxes = mx.symbol.Variable(name="gt_boxes")),但是rois为symbol,是之前网络的输出symbol,所以实际输出的arguments为gt_boxes本身,以及rois所依赖的全部variables,包含认为定义的占位符variable和网络层自带的参数variable。

[‘data‘, ‘conv1_1_weight‘, ‘conv1_1_bias‘, ‘conv1_2_weight‘, ‘conv1_2_bias‘, ‘conv2_1_weight‘, ‘conv2_1_bias‘, ‘conv2_2_weight‘, ‘conv2_2_bias‘, ‘conv3_1_weight‘, ‘conv3_1_bias‘, ‘conv3_2_weight‘, ‘conv3_2_bias‘, ‘conv3_3_weight‘, ‘conv3_3_bias‘, ‘conv4_1_weight‘, ‘conv4_1_bias‘, ‘conv4_2_weight‘, ‘conv4_2_bias‘, ‘conv4_3_weight‘, ‘conv4_3_bias‘, ‘conv5_1_weight‘, ‘conv5_1_bias‘, ‘conv5_2_weight‘, ‘conv5_2_bias‘, ‘conv5_3_weight‘, ‘conv5_3_bias‘, ‘rpn_conv_3x3_weight‘, ‘rpn_conv_3x3_bias‘, ‘rpn_cls_score_weight‘, ‘rpn_cls_score_bias‘, ‘rpn_bbox_pred_weight‘, ‘rpn_bbox_pred_bias‘, ‘im_info‘,

‘gt_boxes‘]

infer_shape

其输入参数in_shape就是list_arguments中return的那几个变量的shape,对于本例,就是rois和gtboxes的shape,本方法用于推断输出symbol和梯度symbol的shape是否正确。

3、实现节点class

节点class的初始化和调用部分的参数完全无关,是由辅助节点来进行传参调用的。但是其forward方法的in_data参数其值接收是从调用初进行的,in_data中的参数就是上面list_arguments方法的return结果([‘rois‘, ‘gt_boxes‘]),实际传参可以有空缺(例如第一小节可以删掉gt_boxes),缺省参数视为定义了一个Variable占位。

class ProposalTargetOperator(mx.operator.CustomOp): ???def __init__(self, num_classes, batch_images, batch_rois, fg_fraction, fg_overlap, box_stds): ???????super(ProposalTargetOperator, self).__init__() ???????self._num_classes = num_classes ????# num_classes是实际要分类的类别数加上背景类 ???????self._batch_images = batch_images ??# 1 ???????self._batch_rois = batch_rois ??????# 128 ???????self._rois_per_image = int(batch_rois / batch_images) ???????self._fg_rois_per_image = int(round(fg_fraction * self._rois_per_image)) ???????self._fg_overlap = fg_overlap ??????# 0.5 ???????self._box_stds = box_stds ??????????# (0.1, 0.1, 0.2, 0.2) ???def forward(self, is_train, req, in_data, out_data, aux): ???????"""Forward interface. Can override when creating new operators. ???????Parameters ???????---------- ???????is_train : bool ???????????whether this is for training ???????req : list of str ???????????how to assign to out_data. can be ‘null‘, ‘write‘, or ‘add‘. ???????????You can optionally use self.assign(dst, req, src) to handle this. ???????in_data, out_data, aux: list of NDArrays ???????????input, output, and auxiliary states for forward. See document for ???????????corresponding arguments of Operator::Forward ???????""" ???????assert self._batch_images == in_data[1].shape[0], ‘check batch size of gt_boxes‘ ???????all_rois = in_data[0].asnumpy() ?# [2000, 5] ???????all_gt_boxes = in_data[1].asnumpy() ?# [n, 5] ???????rois = np.empty((0, 5), dtype=np.float32) ???????labels = np.empty((0, ), dtype=np.float32) ???????bbox_targets = np.empty((0, 4 * self._num_classes), dtype=np.float32) ???????bbox_weights = np.empty((0, 4 * self._num_classes), dtype=np.float32) ???????for batch_idx in range(self._batch_images): ???????????b_rois = all_rois[np.where(all_rois[:, 0] == batch_idx)[0]] ???????????b_gt_boxes = all_gt_boxes[batch_idx] ???????????b_gt_boxes = b_gt_boxes[np.where(b_gt_boxes[:, -1] > 0)[0]] ???????????# Include ground-truth boxes in the set of candidate rois ???????????batch_pad = batch_idx * np.ones((b_gt_boxes.shape[0], 1), dtype=b_gt_boxes.dtype) ???????????b_rois = np.vstack((b_rois, np.hstack((batch_pad, b_gt_boxes[:, :-1])))) ???????????b_rois, b_labels, b_bbox_targets, b_bbox_weights = ????????????????sample_rois(b_rois, b_gt_boxes, num_classes=self._num_classes, rois_per_image=self._rois_per_image, ???????????????????????????fg_rois_per_image=self._fg_rois_per_image, fg_overlap=self._fg_overlap, box_stds=self._box_stds) ???????????rois = np.vstack((rois, b_rois)) ???????????labels = np.hstack((labels, b_labels)) ???????????bbox_targets = np.vstack((bbox_targets, b_bbox_targets)) ???????????bbox_weights = np.vstack((bbox_weights, b_bbox_weights)) ???????self.assign(out_data[0], req[0], rois) ???????self.assign(out_data[1], req[1], labels) ???????self.assign(out_data[2], req[2], bbox_targets) ???????self.assign(out_data[3], req[3], bbox_weights) ???def backward(self, req, out_grad, in_data, out_data, in_grad, aux): ???????"""Backward interface. Can override when creating new operators. ???????Parameters ???????---------- ???????req : list of str ???????????how to assign to in_grad. can be ‘null‘, ‘write‘, or ‘add‘. ???????????You can optionally use self.assign(dst, req, src) to handle this. ???????out_grad, in_data, out_data, in_grad, aux : list of NDArrays ???????????input and output for backward. See document for ???????????corresponding arguments of Operator::Backward ???????""" ???????self.assign(in_grad[0], req[0], 0) ???????self.assign(in_grad[1], req[1], 0)

 介绍完辅助节点,本部分的介绍就不太多了,注意的就是向前向后两个方法没有返回值,使用assign来给symbol赋值,数量顺序要和辅助class的argument、output对应上,具体实现因为没有研究C++源码,没办法更详细介绍了,不过不影响使用(大概)。

另外,辅助节点class是会在python解释器里直接执行的,也就是说我们添加在函数体中的print什么的能够得到输出,但是在本class中,添加的中间输出不会被print出来,应该是建立符号图时被略去了(有关C++优化计算图的机理,李沐博士有介绍,不过我的C++功底不够,没有看过源码,仍旧觉得符号式编程的运行过程很神奇……),另外,我们在bind等操作做检查时,仅仅会运行辅助节点,不到真实的数据流入,这个class是不会运行乃至报错的,所以辅助节点的设计真的很重要。

『MXNet』第十二弹_再谈新建计算节点

原文地址:https://www.cnblogs.com/hellcat/p/9715364.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved