一般情况下我们在使用Dataset<Row>进行groupByKey时,你会发现这个方法最后一个参数需要一个encoder,那么这些encoder如何定义呢?
一般数据类型
static Encoder<byte[]> ???BINARY() ??????????????????????????An encoder for arrays of bytes.static Encoder<Boolean> ???BOOLEAN() ????????????????????????An encoder for nullable boolean type.static Encoder<Byte> ???BYTE() ??????????????????????????????An encoder for nullable byte type.static Encoder<java.sql.Date> ???DATE() ?????????????????????An encoder for nullable date type.static Encoder<java.math.BigDecimal> ???DECIMAL() ???????????An encoder for nullable decimal type.static Encoder<Double> ???DOUBLE() ??????????????????????????An encoder for nullable double type.static Encoder<Float> ???FLOAT() ????????????????????????????An encoder for nullable float type.static Encoder<Integer> ???INT() ????????????????????????????An encoder for nullable int type.static Encoder<Long> ???LONG() ??????????????????????????????An encoder for nullable long type.static Encoder<Short> ???SHORT() ????????????????????????????An encoder for nullable short type.static Encoder<String> ???STRING() ??????????????????????????An encoder for nullable string type.static Encoder<java.sql.Timestamp> ???TIMESTAMP() ???????????An encoder for nullable timestamp type.
示例:
== Scala == Encoders are generally created automatically through implicits from a SparkSession, or can be explicitly created by calling static methods on Encoders. ??import spark.implicits._ ??val ds = Seq(1, 2, 3).toDS() // implicitly provided (spark.implicits.newIntEncoder) == Java == Encoders are specified by calling static methods on Encoders. ??List<String> data = Arrays.asList("abc", "abc", "xyz"); ??Dataset<String> ds = context.createDataset(data, Encoders.STRING());
Class类型:
Or constructed from Java Beans: ??Encoders.bean(MyClass.class);
Tuple类型:
一般类型的Tuple
??Encoder<Tuple2<Integer, String>> encoder2 = Encoders.tuple(Encoders.INT(), Encoders.STRING()); ??List<Tuple2<Integer, String>> data2 = Arrays.asList(new scala.Tuple2(1, "a"); ??Dataset<Tuple2<Integer, String>> ds2 = context.createDataset(data2, encoder2);
Tuple包含类的:
Encoder<Tuple2<String, MyClass>> encoder = Encoders.tuple(Encoders.STRING(), Encoders.bean(MyClass.class));
关于Encoder请参考《http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Encoder.html》
关于Encoders请参考《http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Encoders.html》
Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十四)Structured Streaming:Encoder
原文地址:https://www.cnblogs.com/yy3b2007com/p/9551644.html