分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 网页技术

MXNET:多层感知机

发布时间:2023-09-06 02:11责任编辑:傅花花关键词:暂无标签

从零开始

前面了解了多层感知机的原理,我们来实现一个多层感知机。

# -*- coding: utf-8 -*-from mxnet import initfrom mxnet import ndarray as ndfrom mxnet.gluon import loss as glossimport gb# 定义数据源batch_size = 256train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)# 定义模型参数num_inputs = 784num_outputs = 10num_hiddens = 256W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))b1 = nd.zeros(num_hiddens)W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))b2 = nd.zeros(num_outputs)params = [W1, b1, W2, b2]for param in params: ???param.attach_grad()# 定义激活函数def relu(X): ???return nd.maximum(X, 0)# 定义模型def net(X): ???X = X.reshape((-1, num_inputs)) ???H = relu(nd.dot(X, W1) + b1) ???return nd.dot(H, W2) + b2# 定义损失函数loss = gloss.SoftmaxCrossEntropyLoss()# 训练模型num_epochs = 5lr = 0.5gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size, ????????????params, lr)

添加隐层后,模型的性能大幅提升

# outputepoch 1, loss 0.5029, train acc 0.852, test acc 0.934epoch 2, loss 0.2000, train acc 0.943, test acc 0.956epoch 3, loss 0.1431, train acc 0.959, test acc 0.964epoch 4, loss 0.1138, train acc 0.967, test acc 0.968epoch 5, loss 0.0939, train acc 0.973, test acc 0.973

在定义模型参数和定义模型步骤,仍然有一些繁琐。

使用Gluon

# -*- coding: utf-8 -*-from mxnet import initfrom mxnet import ndarray as ndfrom mxnet.gluon import loss as glossimport gb# 定义数据源batch_size = 256train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)# 定义模型from mxnet.gluon import nnnet = nn.Sequential()net.add(nn.Dense(256, activation='relu'))net.add(nn.Dense(10))net.add(nn.Dense(10))net.initialize(init.Normal(sigma=0.01))# 定义损失函数loss = gloss.SoftmaxCrossEntropyLoss()# 训练模型from mxnet import gluontrainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})num_epochs = 5gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size, ????????????None, None, trainer)# outputepoch 1, loss 1.3065, train acc 0.525, test acc 0.814epoch 2, loss 0.2480, train acc 0.928, test acc 0.950epoch 3, loss 0.1442, train acc 0.958, test acc 0.961epoch 4, loss 0.1060, train acc 0.969, test acc 0.971epoch 5, loss 0.0807, train acc 0.976, test acc 0.973

MXNET:多层感知机

原文地址:https://www.cnblogs.com/houkai/p/9520970.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved