分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 网页技术

stn,spatial transformer network总结

发布时间:2023-09-06 02:07责任编辑:蔡小小关键词:暂无标签

对整篇paper的一个总结:https://blog.csdn.net/xbinworld/article/details/69049680

github:1.https://github.com/Dive-frank/caffe_stn 有prototxt,并且prototxt看起来写的还不错

           2.https://github.com/christopher5106/last_caffe_with_stn,最原始的用caffe写stn的

stn就是一个模块,可以加在任何两个卷积之间,是无监督学习的.通过localisation net学theta参数,6个值用来做仿射变换.可以这样认为,localisation net之前是输入,暂且叫feature map i,之后就是输出,暂且叫feature map o.必须清楚一点是:经过stn处理之后,feature map的大小保持不变,localisation net之后的feature map虽然没有像素值,但是是有坐标值的.这些localisation net之后的feature map(里面所有的坐标点)通过仿射变换找到在输入feature map上的坐标点,然后从这些坐标点取出像素值给输出的feature map,一一对应.可以这样理解,其实输出的feature map就是从输入的feature map里面抠出的一部分放大,所以,输出的feature map的所有点都会在输入上有相应的映射点.这时你在想,实际上输入输出是一样大的,把输出的所有点映射到输入的一部分区域,那肯定在输出落在输入的点肯定不全是整数点,因为个数不够,所以会有许多浮点数的点,这个时候就利用插值来求这些点的像素值了.

stn这种主要是解决分类问题,因为是整张图来做,如果用在detection,我觉得可以把那个物体抠出来单独做stn

stn,spatial transformer network总结

原文地址:https://www.cnblogs.com/ymjyqsx/p/9397503.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved