分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 网页技术

Mxnet 查看模型params的网络结构

发布时间:2023-09-06 01:59责任编辑:熊小新关键词:暂无标签
import mxnet as mx ?import pdb ?def load_checkpoint(): ?????""" ????Load model checkpoint from file. ????:param prefix: Prefix of model name. ????:param epoch: Epoch number of model we would like to load. ????:return: (arg_params, aux_params) ????arg_params : dict of str to NDArray ????????Model parameter, dict of name to NDArray of net‘s weights. ????aux_params : dict of str to NDArray ????????Model parameter, dict of name to NDArray of net‘s auxiliary states. ????""" ?????save_dict = mx.nd.load(‘model-0000.params‘) ?????arg_params = {} ?????aux_params = {} ?????for k, v in save_dict.items(): ?????????tp, name = k.split(‘:‘, 1) ?????????if tp == ‘arg‘: ?????????????arg_params[name] = v ?????????if tp == ‘aux‘: ?????????????aux_params[name] = v ?????return arg_params, aux_params ?????def convert_context(params, ctx): ?????""" ????:param params: dict of str to NDArray ????:param ctx: the context to convert to ????:return: dict of str of NDArray with context ctx ????""" ?????new_params = dict() ?????for k, v in params.items(): ?????????new_params[k] = v.as_in_context(ctx) ?????#print new_params[0] ?????return new_params ?????def load_param(convert=False, ctx=None): ?????""" ????wrapper for load checkpoint ????:param prefix: Prefix of model name. ????:param epoch: Epoch number of model we would like to load. ????:param convert: reference model should be converted to GPU NDArray first ????:param ctx: if convert then ctx must be designated. ????:return: (arg_params, aux_params) ????""" ?????arg_params, aux_params = load_checkpoint() ?????if convert: ?????????if ctx is None: ?????????????ctx = mx.cpu() ?????????arg_params = convert_context(arg_params, ctx) ?????????aux_params = convert_context(aux_params, ctx) ?????return arg_params, aux_params ?????if __name__==‘__main__‘: ?????????result = ?load_param(); ?????????#pdb.set_trace() ?????????print ‘result is‘ ?????????#print result ???????for dic in result: ???????????for key in dic: ???????????????print(key,dic[key].shape) ???????# print ‘one of results is:‘ ?????????# print result[0][‘fc2_weight‘].asnumpy() ?

python showmxmodel.py 2>&1 | tee log.txt
result is
(‘stage3_unit2_bn1_beta‘, (256L,))
(‘stage3_unit2_bn3_beta‘, (256L,))
(‘stage3_unit11_bn1_gamma‘, (256L,))
(‘stage3_unit5_bn3_gamma‘, (256L,))
(‘stage3_unit3_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage2_unit1_bn3_gamma‘, (128L,))
(‘stage3_unit4_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit12_bn3_beta‘, (256L,))
(‘stage2_unit2_bn3_beta‘, (128L,))
(‘conv0_weight‘, (64L, 3L, 3L, 3L))
(‘stage3_unit11_relu1_gamma‘, (256L,))
(‘stage4_unit1_conv1sc_weight‘, (512L, 256L, 1L, 1L))
(‘stage3_unit1_conv1sc_weight‘, (256L, 128L, 1L, 1L))
(‘bn1_beta‘, (512L,))
(‘stage1_unit2_bn2_beta‘, (64L,))
(‘stage3_unit2_conv2_weight‘, (256L, 256L, 3L, 3L))
(‘stage1_unit2_conv1_weight‘, (64L, 64L, 3L, 3L))
(‘stage3_unit14_bn2_beta‘, (256L,))
(‘stage4_unit2_bn3_beta‘, (512L,))
(‘stage3_unit8_bn1_gamma‘, (256L,))
(‘stage3_unit7_bn1_gamma‘, (256L,))
(‘stage2_unit3_bn1_beta‘, (128L,))
(‘stage2_unit4_conv1_weight‘, (128L, 128L, 3L, 3L))
(‘stage3_unit2_bn2_gamma‘, (256L,))
(‘stage1_unit1_conv1_weight‘, (64L, 64L, 3L, 3L))
(‘stage3_unit9_conv2_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit13_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit1_relu1_gamma‘, (256L,))
(‘stage4_unit1_bn3_beta‘, (512L,))
(‘stage2_unit1_bn2_beta‘, (128L,))
(‘stage3_unit14_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit8_bn1_beta‘, (256L,))
(‘stage3_unit11_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage1_unit1_bn3_gamma‘, (64L,))
(‘stage2_unit2_conv2_weight‘, (128L, 128L, 3L, 3L))
(‘stage4_unit2_bn1_gamma‘, (512L,))
(‘stage3_unit3_bn1_gamma‘, (256L,))
(‘stage1_unit3_bn2_gamma‘, (64L,))
(‘stage1_unit3_bn3_gamma‘, (64L,))
(‘stage4_unit2_relu1_gamma‘, (512L,))
(‘stage3_unit10_conv2_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit12_conv1_weight‘, (256L, 256L, 3L, 3L))
(‘stage3_unit2_relu1_gamma‘, (256L,))
(‘stage3_unit10_bn2_beta‘, (256L,))
(‘stage2_unit3_bn3_gamma‘, (128L,))
(‘stage2_unit3_bn2_beta‘, (128L,))
(‘stage3_unit8_bn3_beta‘, (256L,))
(‘fc1_gamma‘, (512L,))
(‘stage3_unit14_bn3_gamma‘, (256L,))
(‘stage3_unit9_bn3_gamma‘, (256L,))
(‘stage2_unit3_bn3_beta‘, (128L,))
(‘stage3_unit1_sc_gamma‘, (256L,))
(‘stage3_unit7_bn1_beta‘, (256L,))
(‘stage1_unit2_bn3_beta‘, (64L,))
(‘stage3_unit14_relu1_gamma‘, (256L,))
(‘stage3_unit13_bn2_beta‘, (256L,))
(‘stage2_unit1_conv1sc_weight‘, (128L, 64L, 1L, 1L))
(‘bn0_beta‘, (64L,))
(‘stage3_unit12_bn1_gamma‘, (256L,))
(‘stage2_unit1_sc_gamma‘, (128L,))
(‘relu0_gamma‘, (64L,))
(‘stage2_unit2_bn2_gamma‘, (128L,))
(‘stage3_unit4_relu1_gamma‘, (256L,))

Mxnet 查看模型params的网络结构

原文地址:https://www.cnblogs.com/adong7639/p/9173854.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved