分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 软件开发

ResNet(Pytroch实现)

发布时间:2023-09-06 02:26责任编辑:沈小雨关键词:暂无标签

github博客传送门
csdn博客传送门

论文在此: Deep Residual Learning for Image Recognition

论文下载: https://arxiv.org/pdf/1512.03385.pdf

网络结构图:


Pytorch代码实现:

import torch.nn as nnimport mathdef conv3x3(in_planes, out_planes, stride=1): ???return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, ????????????????????padding=1, bias=False)class BasicBlock(nn.Module): ???expansion = 1 ???def __init__(self, inplanes, planes, stride=1, downsample=None): ???????super(BasicBlock, self).__init__() ???????self.conv1 = conv3x3(inplanes, planes, stride) ???????self.bn1 = nn.BatchNorm2d(planes) ???????self.relu = nn.ReLU(inplace=True) ???????self.conv2 = conv3x3(planes, planes) ???????self.bn2 = nn.BatchNorm2d(planes) ???????self.downsample = downsample ???????self.stride = stride ???def forward(self, x): ???????residual = x ???????out = self.conv1(x) ???????out = self.bn1(out) ???????out = self.relu(out) ???????out = self.conv2(out) ???????out = self.bn2(out) ???????if self.downsample is not None: ???????????residual = self.downsample(x) ???????out += residual ???????out = self.relu(out) ???????return outclass Bottleneck(nn.Module): ???expansion = 4 ???def __init__(self, inplanes, planes, stride=1, downsample=None): ???????super(Bottleneck, self).__init__() ???????self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) ???????self.bn1 = nn.BatchNorm2d(planes) ???????self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, ??????????????????????????????padding=1, bias=False) ???????self.bn2 = nn.BatchNorm2d(planes) ???????self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) ???????self.bn3 = nn.BatchNorm2d(planes * 4) ???????self.relu = nn.ReLU(inplace=True) ???????self.downsample = downsample ???????self.stride = stride ???def forward(self, x): ???????residual = x ???????out = self.conv1(x) ???????out = self.bn1(out) ???????out = self.relu(out) ???????out = self.conv2(out) ???????out = self.bn2(out) ???????out = self.relu(out) ???????out = self.conv3(out) ???????out = self.bn3(out) ???????if self.downsample is not None: ???????????residual = self.downsample(x) ???????out += residual ???????out = self.relu(out) ???????return outclass ResNet(nn.Module): ???def __init__(self, block, layers, num_classes=1000): ???????self.inplanes = 64 ???????super(ResNet, self).__init__() ???????self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, ??????????????????????????????bias=False) ???????self.bn1 = nn.BatchNorm2d(64) ???????self.relu = nn.ReLU(inplace=True) ???????self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ???????self.layer1 = self._make_layer(block, 64, layers[0]) ???????self.layer2 = self._make_layer(block, 128, layers[1], stride=2) ???????self.layer3 = self._make_layer(block, 256, layers[2], stride=2) ???????self.layer4 = self._make_layer(block, 512, layers[3], stride=2) ???????self.avgpool = nn.AvgPool2d(7, stride=1) ???????self.fc = nn.Linear(512 * block.expansion, num_classes) ???????for m in self.modules(): ???????????if isinstance(m, nn.Conv2d): ???????????????n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels ???????????????m.weight.data.normal_(0, math.sqrt(2. / n)) ???????????elif isinstance(m, nn.BatchNorm2d): ???????????????m.weight.data.fill_(1) ???????????????m.bias.data.zero_() ???def _make_layer(self, block, planes, blocks, stride=1): ???????downsample = None ???????if stride != 1 or self.inplanes != planes * block.expansion: ???????????downsample = nn.Sequential( ???????????????nn.Conv2d(self.inplanes, planes * block.expansion, ?????????????????????????kernel_size=1, stride=stride, bias=False), ???????????????nn.BatchNorm2d(planes * block.expansion), ???????????) ???????layers = [] ???????layers.append(block(self.inplanes, planes, stride, downsample)) ???????self.inplanes = planes * block.expansion ???????for i in range(1, blocks): ???????????layers.append(block(self.inplanes, planes)) ???????return nn.Sequential(*layers) ???def forward(self, x): ???????x = self.conv1(x) ???????x = self.bn1(x) ???????x = self.relu(x) ???????x = self.maxpool(x) ???????x = self.layer1(x) ???????x = self.layer2(x) ???????x = self.layer3(x) ???????x = self.layer4(x) ???????x = self.avgpool(x) ???????x = x.view(x.size(0), -1) ???????x = self.fc(x) ???????return xdef resnet18(**kwargs): ???model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) ???return modeldef resnet34(**kwargs): ???model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) ???return modeldef resnet50(**kwargs): ???model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) ???return modeldef resnet101(**kwargs): ???model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) ???return modeldef resnet152(**kwargs): ???model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) ???return modelif __name__ == ‘__main__‘: ???# ‘ResNet‘, ‘resnet18‘, ‘resnet34‘, ‘resnet50‘, ‘resnet101‘, ‘resnet152‘ ???# Example ???net18 = resnet18() ???print(net18)

ResNet(Pytroch实现)

原文地址:https://www.cnblogs.com/Mrzhang3389/p/10127223.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved