分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 软件开发

SSD Network Architecture--keras version

发布时间:2023-09-06 01:08责任编辑:白小东关键词:暂无标签
这里的网络架构和论文中插图中的网络架构是相一致的。
对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面。
可别直接粘贴复制,里面有些中文的解释,不一定可行的。
#defint input shape
input_shape = (300,300,3)
#defint the number of classesnum_classes = 21
#Here the network is wrapped in to a dictory because it more easy to make some operations.net = {}# Block 1input_tensor = Input(shape=input_shape)
#defint the image hight and wightimg_size = (input_shape[1], input_shape[0])net[‘input‘] = input_tensornet[‘conv1_1‘] = Convolution2D(64, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv1_1‘)(net[‘input‘])net[‘conv1_2‘] = Convolution2D(64, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv1_2‘)(net[‘conv1_1‘])net[‘pool1‘] = MaxPooling2D((2, 2), strides=(2, 2), border_mode=‘same‘, ???????????????????????????name=‘pool1‘)(net[‘conv1_2‘])# Block 2net[‘conv2_1‘] = Convolution2D(128, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv2_1‘)(net[‘pool1‘])net[‘conv2_2‘] = Convolution2D(128, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv2_2‘)(net[‘conv2_1‘])net[‘pool2‘] = MaxPooling2D((2, 2), strides=(2, 2), border_mode=‘same‘, ???????????????????????????name=‘pool2‘)(net[‘conv2_2‘])# Block 3net[‘conv3_1‘] = Convolution2D(256, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv3_1‘)(net[‘pool2‘])net[‘conv3_2‘] = Convolution2D(256, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv3_2‘)(net[‘conv3_1‘])net[‘conv3_3‘] = Convolution2D(256, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv3_3‘)(net[‘conv3_2‘])net[‘pool3‘] = MaxPooling2D((2, 2), strides=(2, 2), border_mode=‘same‘, ???????????????????????????name=‘pool3‘)(net[‘conv3_3‘])# Block 4net[‘conv4_1‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv4_1‘)(net[‘pool3‘])net[‘conv4_2‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv4_2‘)(net[‘conv4_1‘])
#the first layer be operatednet[‘conv4_3‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv4_3‘)(net[‘conv4_2‘])net[‘pool4‘] = MaxPooling2D((2, 2), strides=(2, 2), border_mode=‘same‘, ???????????????????????????name=‘pool4‘)(net[‘conv4_3‘])# Block 5net[‘conv5_1‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv5_1‘)(net[‘pool4‘])net[‘conv5_2‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv5_2‘)(net[‘conv5_1‘])net[‘conv5_3‘] = Convolution2D(512, 3, 3, ??????????????????????????????activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv5_3‘)(net[‘conv5_2‘])net[‘pool5‘] = MaxPooling2D((3, 3), strides=(1, 1), border_mode=‘same‘, ???????????????????????????name=‘pool5‘)(net[‘conv5_3‘])
#here is the FC6 in the orginal VGG16 Network,There move to Atrous Convolution for the reason i don‘t know.# FC6net[‘fc6‘] = AtrousConvolution2D(1024, 3, 3, atrous_rate=(6, 6), ????????????????????????????????activation=‘relu‘, border_mode=‘same‘, ????????????????????????????????name=‘fc6‘)(net[‘pool5‘])
#the second layer to be operated# FC7net[‘fc7‘] = Convolution2D(1024, 1, 1, activation=‘relu‘, ??????????????????????????border_mode=‘same‘, name=‘fc7‘)(net[‘fc6‘])# x = Dropout(0.5, name=‘drop7‘)(x)# Block 6net[‘conv6_1‘] = Convolution2D(256, 1, 1, activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv6_1‘)(net[‘fc7‘])
#the third layer to be opreatednet[‘conv6_2‘] = Convolution2D(512, 3, 3, subsample=(2, 2), ??????????????????????????????activation=‘relu‘, border_mode=‘same‘, ??????????????????????????????name=‘conv6_2‘)(net[‘conv6_1‘])# Block 7net[‘conv7_1‘] = Convolution2D(128, 1, 1, activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv7_1‘)(net[‘conv6_2‘])net[‘conv7_2‘] = ZeroPadding2D()(net[‘conv7_1‘])
#the forth layer to be operatednet[‘conv7_2‘] = Convolution2D(256, 3, 3, subsample=(2, 2), ??????????????????????????????activation=‘relu‘, border_mode=‘valid‘, ??????????????????????????????name=‘conv7_2‘)(net[‘conv7_2‘])# Block 8net[‘conv8_1‘] = Convolution2D(128, 1, 1, activation=‘relu‘, ??????????????????????????????border_mode=‘same‘, ??????????????????????????????name=‘conv8_1‘)(net[‘conv7_2‘])
#the fifth layer to be operatednet[‘conv8_2‘] = Convolution2D(256, 3, 3, subsample=(2, 2), ??????????????????????????????activation=‘relu‘, border_mode=‘same‘, ??????????????????????????????name=‘conv8_2‘)(net[‘conv8_1‘])
# the last layer to be operated# Last Pool net[‘pool6‘] = GlobalAveragePooling2D(name=‘pool6‘)(net[‘conv8_2‘])# Prediction from conv4_3
# net[‘conv4_3‘]._shape = (?, 38, 38, 512)
# 算了还是说中文吧,这个层是用来对输入数据进行正则化的层,有参数需要学习,输出的数据形式和输入输入形式是一致的。net[‘conv4_3_norm‘] = Normalize(20, name=‘conv4_3_norm‘)(net[‘conv4_3‘])num_priors = 3#here is *4 because the box need 4 number to define,here is only predice the box coordinatex = Convolution2D(num_priors * 4, 3, 3, border_mode=‘same‘, ?????????????????name=‘conv4_3_norm_mbox_loc‘)(net[‘conv4_3_norm‘])net[‘conv4_3_norm_mbox_loc‘] = xflatten = Flatten(name=‘conv4_3_norm_mbox_loc_flat‘)net[‘conv4_3_norm_mbox_loc_flat‘] = flatten(net[‘conv4_3_norm_mbox_loc‘])
#the box coordinate is finished now it will perdice the classesname = ‘conv4_3_norm_mbox_conf‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)
# here is start predict the classesx = Convolution2D(num_priors * num_classes, 3, 3, border_mode=‘same‘, ?????????????????name=name)(net[‘conv4_3_norm‘])net[‘conv4_3_norm_mbox_conf‘] = xflatten = Flatten(name=‘conv4_3_norm_mbox_conf_flat‘)net[‘conv4_3_norm_mbox_conf_flat‘] = flatten(net[‘conv4_3_norm_mbox_conf‘])
#这里是用来对conv4_3层的feature map生成论文中所说的default box,对没错,就是直接使用Feature map来进行default box的生成
#当然这里要指定一些参数,这些参数是需要好好斟酌的。priorbox = PriorBox(img_size, 30.0, aspect_ratios=[2], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘conv4_3_norm_mbox_priorbox‘)net[‘conv4_3_norm_mbox_priorbox‘] = priorbox(net[‘conv4_3_norm‘])#好了,到这里第一个层的操作就完成了,下面其他层的操作都是相类似的啦。# Prediction from fc7num_priors = 6net[‘fc7_mbox_loc‘] = Convolution2D(num_priors * 4, 3, 3, ???????????????????????????????????border_mode=‘same‘, ???????????????????????????????????name=‘fc7_mbox_loc‘)(net[‘fc7‘])flatten = Flatten(name=‘fc7_mbox_loc_flat‘)net[‘fc7_mbox_loc_flat‘] = flatten(net[‘fc7_mbox_loc‘])name = ‘fc7_mbox_conf‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)net[‘fc7_mbox_conf‘] = Convolution2D(num_priors * num_classes, 3, 3, ????????????????????????????????????border_mode=‘same‘, ????????????????????????????????????name=name)(net[‘fc7‘])flatten = Flatten(name=‘fc7_mbox_conf_flat‘)net[‘fc7_mbox_conf_flat‘] = flatten(net[‘fc7_mbox_conf‘])priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘fc7_mbox_priorbox‘)net[‘fc7_mbox_priorbox‘] = priorbox(net[‘fc7‘])# Prediction from conv6_2num_priors = 6x = Convolution2D(num_priors * 4, 3, 3, border_mode=‘same‘, ?????????????????name=‘conv6_2_mbox_loc‘)(net[‘conv6_2‘])net[‘conv6_2_mbox_loc‘] = xflatten = Flatten(name=‘conv6_2_mbox_loc_flat‘)net[‘conv6_2_mbox_loc_flat‘] = flatten(net[‘conv6_2_mbox_loc‘])name = ‘conv6_2_mbox_conf‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)x = Convolution2D(num_priors * num_classes, 3, 3, border_mode=‘same‘, ?????????????????name=name)(net[‘conv6_2‘])net[‘conv6_2_mbox_conf‘] = xflatten = Flatten(name=‘conv6_2_mbox_conf_flat‘)net[‘conv6_2_mbox_conf_flat‘] = flatten(net[‘conv6_2_mbox_conf‘])priorbox = PriorBox(img_size, 114.0, max_size=168.0, aspect_ratios=[2, 3], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘conv6_2_mbox_priorbox‘)net[‘conv6_2_mbox_priorbox‘] = priorbox(net[‘conv6_2‘])# Prediction from conv7_2num_priors = 6x = Convolution2D(num_priors * 4, 3, 3, border_mode=‘same‘, ?????????????????name=‘conv7_2_mbox_loc‘)(net[‘conv7_2‘])net[‘conv7_2_mbox_loc‘] = xflatten = Flatten(name=‘conv7_2_mbox_loc_flat‘)net[‘conv7_2_mbox_loc_flat‘] = flatten(net[‘conv7_2_mbox_loc‘])name = ‘conv7_2_mbox_conf‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)x = Convolution2D(num_priors * num_classes, 3, 3, border_mode=‘same‘, ?????????????????name=name)(net[‘conv7_2‘])net[‘conv7_2_mbox_conf‘] = xflatten = Flatten(name=‘conv7_2_mbox_conf_flat‘)net[‘conv7_2_mbox_conf_flat‘] = flatten(net[‘conv7_2_mbox_conf‘])priorbox = PriorBox(img_size, 168.0, max_size=222.0, aspect_ratios=[2, 3], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘conv7_2_mbox_priorbox‘)net[‘conv7_2_mbox_priorbox‘] = priorbox(net[‘conv7_2‘])# Prediction from conv8_2num_priors = 6x = Convolution2D(num_priors * 4, 3, 3, border_mode=‘same‘, ?????????????????name=‘conv8_2_mbox_loc‘)(net[‘conv8_2‘])net[‘conv8_2_mbox_loc‘] = xflatten = Flatten(name=‘conv8_2_mbox_loc_flat‘)net[‘conv8_2_mbox_loc_flat‘] = flatten(net[‘conv8_2_mbox_loc‘])name = ‘conv8_2_mbox_conf‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)x = Convolution2D(num_priors * num_classes, 3, 3, border_mode=‘same‘, ?????????????????name=name)(net[‘conv8_2‘])net[‘conv8_2_mbox_conf‘] = xflatten = Flatten(name=‘conv8_2_mbox_conf_flat‘)net[‘conv8_2_mbox_conf_flat‘] = flatten(net[‘conv8_2_mbox_conf‘])priorbox = PriorBox(img_size, 222.0, max_size=276.0, aspect_ratios=[2, 3], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘conv8_2_mbox_priorbox‘)net[‘conv8_2_mbox_priorbox‘] = priorbox(net[‘conv8_2‘])# Prediction from pool6num_priors = 6x = Dense(num_priors * 4, name=‘pool6_mbox_loc_flat‘)(net[‘pool6‘])net[‘pool6_mbox_loc_flat‘] = xname = ‘pool6_mbox_conf_flat‘if num_classes != 21: ???name += ‘_{}‘.format(num_classes)x = Dense(num_priors * num_classes, name=name)(net[‘pool6‘])net[‘pool6_mbox_conf_flat‘] = xpriorbox = PriorBox(img_size, 276.0, max_size=330.0, aspect_ratios=[2, 3], ???????????????????variances=[0.1, 0.1, 0.2, 0.2], ???????????????????name=‘pool6_mbox_priorbox‘)
#由于这里的维数不对,因此要修改Feature map层对应的维数信息if K.image_dim_ordering() == ‘tf‘: ???target_shape = (1, 1, 256)else: ???target_shape = (256, 1, 1)net[‘pool6_reshaped‘] = Reshape(target_shape, ???????????????????????????????name=‘pool6_reshaped‘)(net[‘pool6‘])net[‘pool6_mbox_priorbox‘] = priorbox(net[‘pool6_reshaped‘])
#好啦,到这里位置,所有的信息都已经生成了,下一步就是根据这些信息来进行训练或者是预测了。# Gather all predictionsnet[‘mbox_loc‘] = merge([net[‘conv4_3_norm_mbox_loc_flat‘], ????????????????????????net[‘fc7_mbox_loc_flat‘], ????????????????????????net[‘conv6_2_mbox_loc_flat‘], ????????????????????????net[‘conv7_2_mbox_loc_flat‘], ????????????????????????net[‘conv8_2_mbox_loc_flat‘], ????????????????????????net[‘pool6_mbox_loc_flat‘]], ???????????????????????mode=‘concat‘, concat_axis=1, name=‘mbox_loc‘)net[‘mbox_conf‘] = merge([net[‘conv4_3_norm_mbox_conf_flat‘], ?????????????????????????net[‘fc7_mbox_conf_flat‘], ?????????????????????????net[‘conv6_2_mbox_conf_flat‘], ?????????????????????????net[‘conv7_2_mbox_conf_flat‘], ?????????????????????????net[‘conv8_2_mbox_conf_flat‘], ?????????????????????????net[‘pool6_mbox_conf_flat‘]], ????????????????????????mode=‘concat‘, concat_axis=1, name=‘mbox_conf‘)net[‘mbox_priorbox‘] = merge([net[‘conv4_3_norm_mbox_priorbox‘], ?????????????????????????????net[‘fc7_mbox_priorbox‘], ?????????????????????????????net[‘conv6_2_mbox_priorbox‘], ?????????????????????????????net[‘conv7_2_mbox_priorbox‘], ?????????????????????????????net[‘conv8_2_mbox_priorbox‘], ?????????????????????????????net[‘pool6_mbox_priorbox‘]], ????????????????????????????mode=‘concat‘, concat_axis=1, ????????????????????????????name=‘mbox_priorbox‘)if hasattr(net[‘mbox_loc‘], ‘_keras_shape‘): ???num_boxes = net[‘mbox_loc‘]._keras_shape[-1] // 4elif hasattr(net[‘mbox_loc‘], ‘int_shape‘): ???num_boxes = K.int_shape(net[‘mbox_loc‘])[-1] // 4net[‘mbox_loc‘] = Reshape((num_boxes, 4), ?????????????????????????name=‘mbox_loc_final‘)(net[‘mbox_loc‘])net[‘mbox_conf‘] = Reshape((num_boxes, num_classes), ??????????????????????????name=‘mbox_conf_logits‘)(net[‘mbox_conf‘])net[‘mbox_conf‘] = Activation(‘softmax‘, ?????????????????????????????name=‘mbox_conf_final‘)(net[‘mbox_conf‘])net[‘predictions‘] = merge([net[‘mbox_loc‘], ??????????????????????????net[‘mbox_conf‘], ??????????????????????????net[‘mbox_priorbox‘]], ??????????????????????????mode=‘concat‘, concat_axis=2, ??????????????????????????name=‘predictions‘)model = Model(net[‘input‘], net[‘predictions‘])

SSD Network Architecture--keras version

原文地址:http://www.cnblogs.com/andyniu/p/7469090.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved