本节内容:
- EFK介绍
- 安装配置EFK
- 配置efk-rbac.yaml文件
- 配置 es-controller.yaml
- 配置 es-service.yaml
- 配置 fluentd-es-ds.yaml
- 配置 kibana-controller.yaml
- 配置 kibana-service.yaml
- 给 Node 设置标签
- 执行定义文件
- 检查执行结果
- 访问 kibana
一、EFK介绍
- Logstash(或者Fluentd)负责收集日志
- Elasticsearch存储日志并提供搜索
- Kibana负责日志查询和展示
官方地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch
通过在每台node上部署一个以DaemonSet方式运行的fluentd来收集每台node上的日志。Fluentd将docker日志目录/var/lib/docker/containers和/var/log目录挂载到Pod中,然后Pod会在node节点的/var/log/pods目录中创建新的目录,可以区别不同的容器日志输出,该目录下有一个日志文件链接到/var/lib/docker/contianers目录下的容器日志输出。
二、安装配置EFK
1. 配置efk-rbac.yaml文件
EFK服务也需要一个efk-rbac.yaml文件,配置serviceaccount为efk。
[root@node1 opt]# mkdir efk[root@node1 opt]# cd efk
[root@node1 efk]# cat efk-rbac.yaml apiVersion: v1kind: ServiceAccountmetadata: ?name: efk ?namespace: kube-system---kind: ClusterRoleBindingapiVersion: rbac.authorization.k8s.io/v1beta1metadata: ?name: efksubjects: ?- kind: ServiceAccount ???name: efk ???namespace: kube-systemroleRef: ?kind: ClusterRole ?name: cluster-admin ?apiGroup: rbac.authorization.k8s.io
2. 配置 es-controller.yaml
[root@node1 efk]# vim es-controller.yamlapiVersion: v1kind: ReplicationControllermetadata: ?name: elasticsearch-logging-v1 ?namespace: kube-system ?labels: ???k8s-app: elasticsearch-logging ???version: v1 ???kubernetes.io/cluster-service: "true" ???addonmanager.kubernetes.io/mode: Reconcilespec: ?replicas: 2 ?selector: ???k8s-app: elasticsearch-logging ???version: v1 ?template: ???metadata: ?????labels: ???????k8s-app: elasticsearch-logging ???????version: v1 ???????kubernetes.io/cluster-service: "true" ???spec: ?????serviceAccountName: efk ?????containers: ?????- image: index.tenxcloud.com/jimmy/elasticsearch:v2.4.1-2 ???????name: elasticsearch-logging ???????resources: ?????????# need more cpu upon initialization, therefore burstable class ?????????limits: ???????????cpu: 1000m ?????????requests: ???????????cpu: 100m ???????ports: ???????- containerPort: 9200 ?????????name: db ?????????protocol: TCP ???????- containerPort: 9300 ?????????name: transport ?????????protocol: TCP ???????volumeMounts: ???????- name: es-persistent-storage ?????????mountPath: /data ???????env: ???????- name: "NAMESPACE" ?????????valueFrom: ???????????fieldRef: ?????????????fieldPath: metadata.namespace ?????volumes: ?????- name: es-persistent-storage ???????emptyDir: {}
3. 配置 es-service.yaml
[root@node1 efk]# vim es-service.yamlapiVersion: v1kind: Servicemetadata: ?name: elasticsearch-logging ?namespace: kube-system ?labels: ???k8s-app: elasticsearch-logging ???kubernetes.io/cluster-service: "true" ???addonmanager.kubernetes.io/mode: Reconcile ???kubernetes.io/name: "Elasticsearch"spec: ?ports: ?- port: 9200 ???protocol: TCP ???targetPort: db ?selector: ???k8s-app: elasticsearch-logging
4. 配置 fluentd-es-ds.yaml
[root@node1 efk]# cat fluentd-es-ds.yamlapiVersion: extensions/v1beta1kind: DaemonSetmetadata: ?name: fluentd-es-v1.22 ?namespace: kube-system ?labels: ???k8s-app: fluentd-es ???kubernetes.io/cluster-service: "true" ???addonmanager.kubernetes.io/mode: Reconcile ???version: v1.22spec: ?template: ???metadata: ?????labels: ???????k8s-app: fluentd-es ???????kubernetes.io/cluster-service: "true" ???????version: v1.22 ?????# This annotation ensures that fluentd does not get evicted if the node ?????# supports critical pod annotation based priority scheme. ?????# Note that this does not guarantee admission on the nodes (#40573). ?????annotations: ???????scheduler.alpha.kubernetes.io/critical-pod: ‘‘ ???spec: ???????serviceAccountName: efk ?????containers: ?????- name: fluentd-es ???????image: index.tenxcloud.com/jimmy/fluentd-elasticsearch:1.22 ???????command: ?????????- ‘/bin/sh‘ ?????????- ‘-c‘ ?????????- ‘/usr/sbin/td-agent 2>&1 >> /var/log/fluentd.log‘ ???????resources: ?????????limits: ???????????memory: 200Mi ?????????requests: ???????????cpu: 100m ???????????memory: 200Mi ???????volumeMounts: ???????- name: varlog ?????????mountPath: /var/log ???????- name: varlibdockercontainers ?????????mountPath: /var/lib/docker/containers ?????????readOnly: true ?????nodeSelector: ???????beta.kubernetes.io/fluentd-ds-ready: "true" ?????tolerations: ?????- key : "node.alpha.kubernetes.io/ismaster" ???????effect: "NoSchedule" ?????terminationGracePeriodSeconds: 30 ?????volumes: ?????- name: varlog ???????hostPath: ?????????path: /var/log ?????- name: varlibdockercontainers ???????hostPath: ?????????path: /var/lib/docker/containers
5. 配置 kibana-controller.yaml
[root@node1 efk]# cat kibana-controller.yamlapiVersion: extensions/v1beta1kind: Deploymentmetadata: ?name: kibana-logging ?namespace: kube-system ?labels: ???k8s-app: kibana-logging ???kubernetes.io/cluster-service: "true" ???addonmanager.kubernetes.io/mode: Reconcilespec: ?replicas: 1 ?selector: ???matchLabels: ?????k8s-app: kibana-logging ?template: ???metadata: ?????labels: ???????k8s-app: kibana-logging ???spec: ?????serviceAccountName: efk ?????containers: ?????- name: kibana-logging ???????image: index.tenxcloud.com/jimmy/kibana:v4.6.1-1 ???????resources: ?????????# keep request = limit to keep this container in guaranteed class ?????????limits: ???????????cpu: 100m ?????????requests: ???????????cpu: 100m ???????env: ?????????- name: "ELASTICSEARCH_URL" ???????????value: "http://elasticsearch-logging:9200" ?????????- name: "KIBANA_BASE_URL" ???????????value: "/api/v1/proxy/namespaces/kube-system/services/kibana-logging" ???????ports: ???????- containerPort: 5601 ?????????name: ui ?????????protocol: TCP
6. 配置 kibana-service.yaml
[root@node1 efk]# cat kibana-service.yamlapiVersion: v1kind: Servicemetadata: ?name: kibana-logging ?namespace: kube-system ?labels: ???k8s-app: kibana-logging ???kubernetes.io/cluster-service: "true" ???addonmanager.kubernetes.io/mode: Reconcile ???kubernetes.io/name: "Kibana"spec: ?ports: ?- port: 5601 ???protocol: TCP ???targetPort: ui ?selector: ???k8s-app: kibana-logging
root@node1 efk]# lsefk-rbac.yaml ?es-controller.yaml ?es-service.yaml ?fluentd-es-ds.yaml ?kibana-controller.yaml ?kibana-service.yaml
7. 给 Node 设置标签
定义 DaemonSet fluentd-es-v1.22 时设置了 nodeSelector beta.kubernetes.io/fluentd-ds-ready=true ,所以需要在期望运行 fluentd 的 Node 上设置该标签;
[root@node1 efk]# kubectl label nodes 172.16.7.151 beta.kubernetes.io/fluentd-ds-ready=truenode "172.16.7.151" labeled[root@node1 efk]# kubectl label nodes 172.16.7.152 beta.kubernetes.io/fluentd-ds-ready=truenode "172.16.7.152" labeled[root@node1 efk]# kubectl label nodes 172.16.7.153 beta.kubernetes.io/fluentd-ds-ready=truenode "172.16.7.153" labeled
8. 执行定义文件
[root@node1 efk]# kubectl create -f .
9. 检查执行结果
[root@node1 efk]# kubectl get deployment -n kube-system|grep kibanakibana-logging ????????1 ????????1 ????????1 ???????????1 ??????????1h[root@node1 efk]# kubectl get pods -n kube-system|grep -E ‘elasticsearch|fluentd|kibana‘elasticsearch-logging-v1-nw3p3 ?????????1/1 ??????Running ??0 ?????????43melasticsearch-logging-v1-pp89h ?????????1/1 ??????Running ??0 ?????????43mfluentd-es-v1.22-cqd1s ?????????????????1/1 ??????Running ??0 ?????????15mfluentd-es-v1.22-f5ljr ?????????????????0/1 ??????Error ????6 ?????????15mfluentd-es-v1.22-x24jx ?????????????????1/1 ??????Running ??0 ?????????15mkibana-logging-4293390753-kg8kx ????????1/1 ??????Running ??0 ?????????1h[root@node1 efk]# kubectl get service ?-n kube-system|grep -E ‘elasticsearch|kibana‘elasticsearch-logging ??10.254.50.63 ????<none> ???????9200/TCP ???????????????????????1hkibana-logging ?????????10.254.169.159 ??<none> ???????5601/TCP ???????????????????????1h
kibana Pod 第一次启动时会用较长时间(10-20分钟)来优化和 Cache 状态页面,可以 tailf 该 Pod 的日志观察进度。
[root@node1 efk]# kubectl logs kibana-logging-4293390753-86h5d -n kube-system -fELASTICSEARCH_URL=http://elasticsearch-logging:9200server.basePath: /api/v1/proxy/namespaces/kube-system/services/kibana-logging{"type":"log","@timestamp":"2017-10-13T00:51:31Z","tags":["info","optimize"],"pid":5,"message":"Optimizing and caching bundles for kibana and statusPage. This may take a few minutes"}{"type":"log","@timestamp":"2017-10-13T01:13:36Z","tags":["info","optimize"],"pid":5,"message":"Optimization of bundles for kibana and statusPage complete in 1324.64 seconds"}{"type":"log","@timestamp":"2017-10-13T01:13:37Z","tags":["status","plugin:kibana@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:38Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":5,"state":"yellow","message":"Status changed from uninitialized to yellow - Waiting for Elasticsearch","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:39Z","tags":["status","plugin:kbn_vislib_vis_types@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:39Z","tags":["status","plugin:markdown_vis@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:39Z","tags":["status","plugin:metric_vis@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:39Z","tags":["status","plugin:spyModes@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:40Z","tags":["status","plugin:statusPage@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:40Z","tags":["status","plugin:table_vis@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}{"type":"log","@timestamp":"2017-10-13T01:13:40Z","tags":["listening","info"],"pid":5,"message":"Server running at http://0.0.0.0:5601"}{"type":"log","@timestamp":"2017-10-13T01:13:45Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":5,"state":"yellow","message":"Status changed from yellow to yellow - No existing Kibana index found","prevState":"yellow","prevMsg":"Waiting for Elasticsearch"}{"type":"log","@timestamp":"2017-10-13T01:13:49Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":5,"state":"green","message":"Status changed from yellow to green - Kibana index ready","prevState":"yellow","prevMsg":"No existing Kibana index found"}
三、访问kibana
1. 通过 kube-apiserver 访问:获取 kibana 服务 URL
[root@node1 efk]# kubectl cluster-infoKubernetes master is running at https://172.16.7.151:6443Elasticsearch is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/elasticsearch-loggingHeapster is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/heapsterKibana is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kibana-loggingKubeDNS is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kube-dnskubernetes-dashboard is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboardmonitoring-grafana is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafanamonitoring-influxdb is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdbTo further debug and diagnose cluster problems, use ‘kubectl cluster-info dump‘.
浏览器访问 URL: https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kibana-logging/app/kibana
2. 通过 kubectl proxy 访问:创建代理
[root@node1 efk]# kubectl proxy --address=‘172.16.7.151‘ --port=8086 --accept-hosts=‘^*$‘ & ?
浏览器访问 URL:http://172.16.7.151:8086/api/v1/proxy/namespaces/kube-system/services/kibana-logging
如果你在这里发现Create按钮是灰色的无法点击,且Time-filed name中没有选项,fluentd要读取/var/log/containers/目录下的log日志,这些日志是从/var/lib/docker/containers/${CONTAINER_ID}/${CONTAINER_ID}-json.log链接过来的,查看你的docker配置,—-log-driver需要设置为json-file格式,默认的可能是journald。
查看当前的--log-driver:
[root@node1 ~]# docker versionClient: Version: ????????1.12.6 API version: ????1.24 Package version: docker-1.12.6-32.git88a4867.el7.centos.x86_64 Go version: ?????go1.7.4 Git commit: ?????88a4867/1.12.6 Built: ??????????Mon Jul ?3 16:02:02 2017 OS/Arch: ????????linux/amd64Server: Version: ????????1.12.6 API version: ????1.24 Package version: docker-1.12.6-32.git88a4867.el7.centos.x86_64 Go version: ?????go1.7.4 Git commit: ?????88a4867/1.12.6 Built: ??????????Mon Jul ?3 16:02:02 2017 OS/Arch: ????????linux/amd64[root@node1 efk]# docker info |grep ‘Logging Driver‘WARNING: Usage of loopback devices is strongly discouraged for production use. Use `--storage-opt dm.thinpooldev` to specify a custom block storage device.WARNING: bridge-nf-call-ip6tables is disabledLogging Driver: journald
修改当前版本docker的--log-driver:
[root@node1 ~]# vim /etc/sysconfig/dockerOPTIONS=‘--selinux-enabled --log-driver=json-file --signature-verification=false‘[root@node1 efk]# systemctl restart docker
【注意】:本来修改这个参数应该在在/etc/docker/daemon.json文件中添加:
{ ?????"log-driver": "json-file",}
但是在该版本中,--log-driver是在文件/etc/sysconfig/docker中定义的。在docker-ce版本中,默认的--log-driver是json-file。
遇到的问题:
由于之前在/etc/docker/daemon.json中配置--log-driver,重启导致docker程序启动失败,等到后来在/etc/sysconfig/docker配置文件中配置好后,启动docker却发现当前node变成NotReady状态,所有的Pod也变为Unknown状态。查看kubelet状态,发现kubelet程序已经挂掉了。
[root@node1 ~]# kubectl get nodesNAME ??????????STATUS ????AGE ??????VERSION172.16.7.151 ??NotReady ??28d ??????v1.6.0172.16.7.152 ??Ready ?????28d ??????v1.6.0172.16.7.153 ??Ready ?????28d ??????v1.6.0
启动kubelet:
[root@node1 ~]# systemctl start kubelet[root@node1 ~]# kubectl get nodesNAME ??????????STATUS ???AGE ??????VERSION172.16.7.151 ??Ready ????28d ??????v1.6.0172.16.7.152 ??Ready ????28d ??????v1.6.0172.16.7.153 ??Ready ????28d ??????v1.6.0
浏览器再次访问 kibana URL:http://172.16.7.151:8086/api/v1/proxy/namespaces/kube-system/services/kibana-logging,此时就会发现有Create按钮了。
在 Settings -> Indices 页面创建一个 index(相当于 mysql 中的一个 database),去掉已经勾选的 Index contains time-based events,使用默认的 logstash-* pattern,点击 Create ;
创建Index后,可以在 Discover 下看到 ElasticSearch logging 中汇聚的日志。
EFK收集Kubernetes应用日志
原文地址:http://www.cnblogs.com/zhaojiankai/p/7898286.html