1.选一个自己感兴趣的主题。
‘’数据观”官方网站数据爬取,网页网址为‘http://www.cbdio.com/node_2568.htm’
2.网络上爬取相关的数据。
import requestsfrom bs4 import BeautifulSoup
url = ‘http://www.cbdio.com/node_2568.htm‘res = requests.get(url)res.encoding = ‘utf-8‘soup = BeautifulSoup(res.text, ‘html.parser‘)for items in soup.select(‘li‘): ???if len(items.select(‘.cb-media-title‘))>0: ???????title=items.select(‘.cb-media-title‘)[0].text#标题 ???????url1=items.select(‘a‘)[0][‘href‘] ???????url2=‘http://www.cbdio.com/{}‘.format(url1)#链接
???????resd=requests.get(url2) ???????resd.encoding=‘utf-8‘ ???????soupd=BeautifulSoup(resd.text,‘html.parser‘) ???????source=soupd.select(‘.cb-article-info‘)[0].text.strip()#来源 ???????content=soupd.select(‘.cb-article‘)[0].text#内容 ???????print("################################################################################") ???????print(‘标题:‘,title,‘\t链接:‘,url2,source)
3.进行文本分析,生成词云。
url=‘http://www.cbdio.com/node_2568.htm‘res = requests.get(url)res.encoding = ‘utf-8‘soup = BeautifulSoup(res.text, ‘html.parser‘)contentls=[]for item in soup.select(‘li‘): ???if len(item.select(‘.cb-media-title‘))>0: ???????url1=item.select(‘a‘)[0][‘href‘] ???????url2=‘http://www.cbdio.com/{}‘.format(url1) ???????resd=requests.get(url2) ???????resd.encoding=‘utf-8‘ ???????soupd=BeautifulSoup(resd.text,‘html.parser‘) ???????cont=soupd.select(‘.cb-article‘)[0].text#内容 ???????contentls.append(cont)print(contentls)words=jieba.lcut(content)ls=[]counts={}for word in words: ???ls.append(word) ???if len(word)==1: ???????continue ???else: ???????counts[word]=counts.get(word,0)+1items = list(counts.items())items.sort(key = lambda x:x[1], reverse = True)for i in range(10): ???word , count = items[i] ???print ("{:<5}{:>2}".format(word,count))#词云制作from wordcloud import WordCloudimport matplotlib.pyplot as pltcy = WordCloud(font_path=‘msyh.ttc‘).generate(content)plt.imshow(cy, interpolation=‘bilinear‘)plt.axis("off")plt.show()
4.对文本分析结果解释说明。
通过以上数据显示,该中国大数据官网主要的话题是数据以及交易 和政府、企业、专家等。
5.写一篇完整的博客,附上源代码、数据爬取及分析结果,形成一个可展示的成果。
import requestsfrom bs4 import BeautifulSoupdef getTheContent(url1): ???res = requests.get(url1) ???res.encoding = ‘utf-8‘ ???soup = BeautifulSoup(res.text, ‘html.parser‘) ???item={} ???item[‘title‘]=soup.select(‘.cb-article-title‘)[0].text#标题 ???item[‘url‘]=url1#链接 ???resd=requests.get(item[‘url‘]) ???resd.encoding=‘utf-8‘ ???soupd=BeautifulSoup(resd.text,‘html.parser‘) ???item[‘source‘]=soupd.select(‘.cb-article-info‘)[0].text.strip()#来源 ???item[‘content‘]=soupd.select(‘.cb-article‘)[0].text#内容 ???return(item)def getOnePage(pageurl): ???res = requests.get(pageurl) ???res.encoding = ‘utf-8‘ ???soup = BeautifulSoup(res.text, ‘html.parser‘) ???itemls=[] ???for item in soup.select(‘li‘): ???????if len(item.select(‘.cb-media-title‘))>0: ???????????url1=item.select(‘a‘)[0][‘href‘] ???????????url2=‘http://www.cbdio.com/{}‘.format(url1) ???????????itemls.append(getTheContent(url2)) ???return(itemls) ?#结巴词频统计import jiebaurl=‘http://www.cbdio.com/node_2568.htm‘res = requests.get(url)res.encoding = ‘utf-8‘soup = BeautifulSoup(res.text, ‘html.parser‘)contentls=[]for item in soup.select(‘li‘): ???if len(item.select(‘.cb-media-title‘))>0: ???????url1=item.select(‘a‘)[0][‘href‘] ???????url2=‘http://www.cbdio.com/{}‘.format(url1) ???????resd=requests.get(url2) ???????resd.encoding=‘utf-8‘ ???????soupd=BeautifulSoup(resd.text,‘html.parser‘) ???????cont=soupd.select(‘.cb-article‘)[0].text#内容 ???????contentls.append(cont)print(contentls)##for each in contentls:## ???f = open("1.txt", ‘r‘, ‘utf-8‘)## ???f.write(each)#### ???print(each)## ???f.close()## ???print(‘#‘)##fo=open(‘1.txt‘,‘r‘)##content=fo.read()##content=str(contentls)words=jieba.lcut(content)ls=[]counts={}for word in words: ???ls.append(word) ???if len(word)==1: ???????continue ???else: ???????counts[word]=counts.get(word,0)+1items = list(counts.items())items.sort(key = lambda x:x[1], reverse = True)for i in range(10): ???word , count = items[i] ???print ("{:<5}{:>2}".format(word,count))#词云制作from wordcloud import WordCloudimport matplotlib.pyplot as pltcy = WordCloud(font_path=‘msyh.ttc‘).generate(content)plt.imshow(cy, interpolation=‘bilinear‘)plt.axis("off")plt.show()#excel导出、数据库存储import reimport pandasimport sqlite3itemtotal=[]for i in range(2,3): ???listurl=‘http://www.cbdio.com/node_2568.htm‘ ???itemtotal.extend(getOnePage(listurl))df =pandas.DataFrame(itemtotal)df.to_excel(‘BigDataItems.xlsx‘)with sqlite3.connect(‘BigDataItems.sqlite‘) as db: ???df.to_sql(‘BigDataItems‘,con=db) ???print(‘输出成功!!‘)
一个完整的大作业--‘’数据观”官方网站数据爬取
原文地址:http://www.cnblogs.com/huanglinxin/p/7732885.html