>>> from sklearn.preprocessing import OneHotEncoder>>> enc = OneHotEncoder()>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) ?>>> enc.n_values_array([2, 3, 4])>>> enc.feature_indices_array([0, 2, 5, 9])>>> enc.transform([[0, 1, 1]]).toarray()array([[ 1., ?0., ?0., ?1., ?0., ?0., ?1., ?0., ?0.]])
注意:仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定
需要使用pandas get_dummies搞定
例如:
Using the get_dummies
will create a new column for every unique string in a certain column:使用get_dummies进行one-hot编码
- pd.get_dummies(df)
还可以:
import pandas as pdimport numpy as npfrom sklearn_pandas import DataFrameMapperfrom sklearn.preprocessing import OneHotEncoderdata = pd.DataFrame({‘text‘:[‘aaa‘, ‘bbb‘], ‘number_1‘:[1, 1], ‘number_2‘:[2, 2]})# ???number_1 ?number_2 text# 0 ????????1 ????????2 ?aaa# 1 ????????1 ????????2 ?bbb# SomeEncoder here must be any encoder which will help you to get# numerical representation from text columnmapper = DataFrameMapper([ ???(‘text‘, SomeEncoder), ???([‘number_1‘, ‘number_2‘], OneHotEncoder())])mapper.fit_transform(data)
sklearn.preprocessing ?OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定
原文地址:http://www.cnblogs.com/bonelee/p/7805894.html