分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > IT知识

解读 pytorch对resnet的官方实现

发布时间:2023-09-06 02:20责任编辑:蔡小小关键词:暂无标签

地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

贴代码

import torch.nn as nnimport torch.utils.model_zoo as model_zoo__all__ = [‘ResNet‘, ‘resnet18‘, ‘resnet34‘, ‘resnet50‘, ‘resnet101‘, ??????????‘resnet152‘]model_urls = { ???‘resnet18‘: ‘https://download.pytorch.org/models/resnet18-5c106cde.pth‘, ???‘resnet34‘: ‘https://download.pytorch.org/models/resnet34-333f7ec4.pth‘, ???‘resnet50‘: ‘https://download.pytorch.org/models/resnet50-19c8e357.pth‘, ???‘resnet101‘: ‘https://download.pytorch.org/models/resnet101-5d3b4d8f.pth‘, ???‘resnet152‘: ‘https://download.pytorch.org/models/resnet152-b121ed2d.pth‘,}def conv3x3(in_planes, out_planes, stride=1): ???"""3x3 convolution with padding""" ???return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, ????????????????????padding=1, bias=False)

  首先导入torch.nn,pytorch的网络模块多在此内,然后导入model_zoo,作用是根据下面的model_urls里的地址加载网络预训练权重。后面还对conv2d进行了一次封装,个人觉得有些多余。

class BasicBlock(nn.Module): ???expansion = 1 ???def __init__(self, inplanes, planes, stride=1, downsample=None): ???????super(BasicBlock, self).__init__() ???????self.conv1 = conv3x3(inplanes, planes, stride) ???????self.bn1 = nn.BatchNorm2d(planes) ???????self.relu = nn.ReLU(inplace=True) ???????self.conv2 = conv3x3(planes, planes) ???????self.bn2 = nn.BatchNorm2d(planes) ???????self.downsample = downsample ???????self.stride = stride ???def forward(self, x): ???????residual = x ???????out = self.conv1(x) ???????out = self.bn1(out) ???????out = self.relu(out) ???????out = self.conv2(out) ???????out = self.bn2(out) ???????if self.downsample is not None: ???????????residual = self.downsample(x) ???????out += residual ???????out = self.relu(out) ???????return out

  这里定义了最重要的残差模块,这个是基础版,由两个叠加的3x3卷积组成,与之相对应的bottleneck模块在下面定义

class Bottleneck(nn.Module): ???expansion = 4 ???def __init__(self, inplanes, planes, stride=1, downsample=None): ???????super(Bottleneck, self).__init__() ???????self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) ???????self.bn1 = nn.BatchNorm2d(planes) ???????self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, ??????????????????????????????padding=1, bias=False) ???????self.bn2 = nn.BatchNorm2d(planes) ???????self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) ???????self.bn3 = nn.BatchNorm2d(planes * self.expansion) ???????self.relu = nn.ReLU(inplace=True) ???????self.downsample = downsample ???????self.stride = stride ???def forward(self, x): ???????residual = x ???????out = self.conv1(x) ???????out = self.bn1(out) ???????out = self.relu(out) ???????out = self.conv2(out) ???????out = self.bn2(out) ???????out = self.relu(out) ???????out = self.conv3(out) ???????out = self.bn3(out) ???????if self.downsample is not None: ???????????residual = self.downsample(x) ???????out += residual ???????out = self.relu(out) ???????return out

  与基础版的不同之处只在于这里是三个卷积,分别是1x1,3x3,1x1,分别用来压缩维度,卷积处理,恢复维度,这里我对inplane,plane,expansion的含义不甚明了,inplane是输入的通道数,plane是输出的通道数,expansion是什么,类似于wide resnet的宽度么?接着就是网络主体了。

class ResNet(nn.Module): ???def __init__(self, block, layers, num_classes=1000): ???????self.inplanes = 64 ???????super(ResNet, self).__init__() ???????self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, ??????????????????????????????bias=False) ???????self.bn1 = nn.BatchNorm2d(64) ???????self.relu = nn.ReLU(inplace=True) ???????self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ???????self.layer1 = self._make_layer(block, 64, layers[0]) ???????self.layer2 = self._make_layer(block, 128, layers[1], stride=2) ???????self.layer3 = self._make_layer(block, 256, layers[2], stride=2) ???????self.layer4 = self._make_layer(block, 512, layers[3], stride=2) ???????self.avgpool = nn.AvgPool2d(7, stride=1) ???????self.fc = nn.Linear(512 * block.expansion, num_classes) ???????for m in self.modules(): ???????????if isinstance(m, nn.Conv2d): ???????????????nn.init.kaiming_normal_(m.weight, mode=‘fan_out‘, nonlinearity=‘relu‘) ???????????elif isinstance(m, nn.BatchNorm2d): ???????????????nn.init.constant_(m.weight, 1) ???????????????nn.init.constant_(m.bias, 0) ???def _make_layer(self, block, planes, blocks, stride=1): ???????downsample = None ???????if stride != 1 or self.inplanes != planes * block.expansion: ???????????downsample = nn.Sequential( ???????????????nn.Conv2d(self.inplanes, planes * block.expansion, ?????????????????????????kernel_size=1, stride=stride, bias=False), ???????????????nn.BatchNorm2d(planes * block.expansion), ???????????) ???????layers = [] ???????layers.append(block(self.inplanes, planes, stride, downsample)) ???????self.inplanes = planes * block.expansion ???????for i in range(1, blocks): ???????????layers.append(block(self.inplanes, planes)) ???????return nn.Sequential(*layers) ???def forward(self, x): ???????x = self.conv1(x) ???????x = self.bn1(x) ???????x = self.relu(x) ???????x = self.maxpool(x) ???????x = self.layer1(x) ???????x = self.layer2(x) ???????x = self.layer3(x) ???????x = self.layer4(x) ???????x = self.avgpool(x) ???????x = x.view(x.size(0), -1) ???????x = self.fc(x) ???????return x

  resnet共有五个阶段,其中第一阶段为一个7x7的卷积处理,stride为2,然后经过池化处理,此时特征图的尺寸已成为输入的1/4,接下来是四个阶段,也就是代码中的layer1,layer2,layer3,layer4。这里用make_layer函数产生四个layer,需要用户输入每个layer的block数目(即layers列表)以及采用的block类型(基础版还是bottleneck版)

接下来就是resnet18等几个模型的类定义

def resnet18(pretrained=False, **kwargs): ???"""Constructs a ResNet-18 model. ???Args: ???????pretrained (bool): If True, returns a model pre-trained on ImageNet ???""" ???model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) ???if pretrained: ???????model.load_state_dict(model_zoo.load_url(model_urls[‘resnet18‘])) ???return modeldef resnet34(pretrained=False, **kwargs): ???"""Constructs a ResNet-34 model. ???Args: ???????pretrained (bool): If True, returns a model pre-trained on ImageNet ???""" ???model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) ???if pretrained: ???????model.load_state_dict(model_zoo.load_url(model_urls[‘resnet34‘])) ???return modeldef resnet50(pretrained=False, **kwargs): ???"""Constructs a ResNet-50 model. ???Args: ???????pretrained (bool): If True, returns a model pre-trained on ImageNet ???""" ???model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) ???if pretrained: ???????model.load_state_dict(model_zoo.load_url(model_urls[‘resnet50‘])) ???return modeldef resnet101(pretrained=False, **kwargs): ???"""Constructs a ResNet-101 model. ???Args: ???????pretrained (bool): If True, returns a model pre-trained on ImageNet ???""" ???model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) ???if pretrained: ???????model.load_state_dict(model_zoo.load_url(model_urls[‘resnet101‘])) ???return modeldef resnet152(pretrained=False, **kwargs): ???"""Constructs a ResNet-152 model. ???Args: ???????pretrained (bool): If True, returns a model pre-trained on ImageNet ???""" ???model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) ???if pretrained: ???????model.load_state_dict(model_zoo.load_url(model_urls[‘resnet152‘])) ???return model

  这里比较简单,就是调用上面ResNet对象,输入block类型和block数目,这里可以看到resnet18和resnet34用的是基础版block,因为此时网络还不深,不太需要考虑模型的效率,而当网络加深到52,101,152层时则有必要引入bottleneck结构,方便模型的存储和计算。另外是否加载预训练权重是可选的,具体就是调用model_zoo加载指定链接地址的序列化文件,反序列化为权重文件。

解读 pytorch对resnet的官方实现

原文地址:https://www.cnblogs.com/wzyuan/p/9880342.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved