分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 代码编程

DSD:Dense-Sparse-Dense training for deep neural networks

发布时间:2023-09-06 01:16责任编辑:蔡小小关键词:暂无标签

ICLR 2017会议论文。

摘要:

神经网络因为参数很多,所以很难训练。

Modern deep neural networks have a large number of parameters, making them very hard to train.

所以,分步骤训练参数。

We propose DSD, a dense-sparse-dense training ?ow, for regularizing deep neural networks and achieving better optimization performance. In the ?rst D (Dense) step, we train a dense network to learn connection weights and importance. In the S (Sparse) step, we regularize the network by pruning the unimportant connections with small weights and retraining the network given the sparsity constraint. In the ?nal D (re-Dense) step, we increase the model capacity by removing the sparsity constraint, re-initialize the pruned parameters from zero and retrain the whole dense network.

实验结果好。

Experiments show that DSD training can improve the performance for a wide range of CNNs, RNNs and LSTMs on the tasks of image classi?cation, caption generation and speech recognition

DSD:Dense-Sparse-Dense training for deep neural networks

原文地址:http://www.cnblogs.com/mengmengmiaomiao/p/7652779.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved