https://www.lydsy.com/JudgeOnline/problem.php?id=4332
因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。
所以设g[i][j] 表示前i位小朋友,分到j个糖果,且前i位小朋友都分到糖果的方案数
令F(x) 表示分到x个糖果的欢乐程度
∴g[i][j] = ∑ g[i-1][j-k]*F(k)
记g[i]=g[i-1]*F,则 g[i]=F ^ i
但是要求的是 Σ g[i][m]
记f[n]=Σ g[i] i∈[1,n] ,那么ans=f[n][m]
f[n]=Σ g[i] i∈[1,n]
=Σ f(n/2)+Σ g[i] i∈[n/2+1,n]
=Σ f(n/2)+Σ F^i i∈[n/2+1,n]
=Σ f(n/2)+Σ F^(n/2+i) i∈[1,n/2]
=Σ f(n/2)+F^(n/2) * Σ F^i i∈[1,n/2]
=Σ f(n/2)+g(n/2)*f(n/2)
然后可以分治FFT解决
如果n是奇数,f(n)=f(n-1)+g[n]=f(n-1)+g(n-1)*f
边界条件:g[][0]=1
#include<cmath>#include<cstdio>#include<algorithm>using namespace std;const int M=1<<17;#define N 10001int m,mod;int r[M+1];int len;const double pi=acos(-1);struct Complex{ ???double x,y; ???Complex() { } ???Complex(double x_,double y_):x(x_),y(y_) { } ???Complex operator + (Complex p) ???{ ???????Complex C; ???????C.x=x+p.x; ???????C.y=y+p.y; ???????return C; ???} ???Complex operator - (Complex p) ???{ ???????Complex C; ???????C.x=x-p.x; ???????C.y=y-p.y; ???????return C; ???} ???Complex operator * (Complex p) ???{ ???????Complex C; ???????C.x=x*p.x-y*p.y; ???????????C.y=x*p.y+y*p.x; ???????return C; ???} ???void clear() ???{ ???????x=y=0; ???}};typedef Complex E;E F[M+1],f[M+1],g[M+1],tmp[M+1];void FFT(E *a,int ty){ ???for(int i=0;i<len;++i) ???????if(i<r[i]) swap(a[i],a[r[i]]); ???for(int i=1;i<len;i<<=1) ???{ ???????E wn(cos(pi/i),ty*sin(pi/i)); ???????for(int p=i<<1,j=0;j<len;j+=p) ???????{ ???????????E w(1,0); ???????????for(int k=0;k<i;++k,w=w*wn) ???????????{ ???????????????E x=a[j+k],y=w*a[i+j+k]; ???????????????a[j+k]=x+y; a[i+j+k]=x-y; ???????????} ???????} ???} ???if(ty==-1) ???{ ???????for(int i=0;i<len;++i) a[i].x=a[i].x/len,a[i].x=int(a[i].x+0.5)%mod,a[i].y=0; ???}}void solve(E *f,E *g,int n){ ???if(!n) ???{ ???????g[0].x=1; ???????return; ???} ???if(n&1) ???{ ???????solve(f,g,n-1); ???????FFT(g,1); ???????for(int i=0;i<len;++i) g[i]=g[i]*F[i]; ???????FFT(g,-1); ???????for(int i=0;i<=m;++i) f[i]=f[i]+g[i]; ???????for(int i=0;i<=m;++i) f[i].x=int(f[i].x)%mod,f[i].y=0; ???????for(int i=m+1;i<len;++i) f[i].clear(),g[i].clear(); ???} ???else ???{ ???????solve(f,g,n/2); ???????for(int i=0;i<len;++i) tmp[i]=f[i]; ???????FFT(tmp,1); ???????FFT(g,1); ???????for(int i=0;i<len;++i) tmp[i]=tmp[i]*g[i]; ???????FFT(tmp,-1); ???????for(int i=0;i<len;++i) g[i]=g[i]*g[i]; ???????FFT(g,-1); ???????for(int i=0;i<=m;++i) f[i]=f[i]+tmp[i]; ???????for(int i=0;i<=m;++i) f[i].x=int(f[i].x)%mod,f[i].y=0; ???????for(int i=m+1;i<len;++i) f[i].clear(),g[i].clear(); ???}}int main(){ ???int n,o,s,u; ???scanf("%d%d%d%d%d%d",&m,&mod,&n,&o,&s,&u); ???//F[0].x=1; ???for(int i=1;i<=m;++i) F[i].x=(o*i*i+s*i+u)%mod; ???int l=0; ???for(len=1;len<=m+m;len<<=1,l++); ???for(int i=0;i<len;++i) r[i]=(r[i>>1]>>1)|((i&1)<<l-1); ???FFT(F,1); ???solve(f,g,n); ???printf("%d",int(f[m].x)); ???return 0;}
bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治FFT)
原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8960712.html