分享web开发知识

注册/登录|最近发布|今日推荐

主页 IT知识网页技术软件开发前端开发代码编程运营维护技术分享教程案例
当前位置:首页 > 教程案例

独热编码OneHotEncoder简介

发布时间:2023-09-06 01:21责任编辑:彭小芳关键词:暂无标签

在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难。即使将类别与数字对应,例如{‘A’,‘B’,‘C’}与[0,1,2]对应,我们也不能认为A与B,B与C距离为1,而A与C距离为2。独热编码正是为了处理这种距离的度量,该方法认为每个类别之间的距离是一样的。该方法将类别与向量对应,例如{‘A’,‘B’,‘C’}分别与[1,0,0],[0,1,0],[0,0,1]对应,注意现在各个类别之间的欧式距离是相同的。

现在我们说明OneHotEncoder函数的使用

1 data=np.array([[1,0,3.25],2 ???????????????[0,0,5.2],3 ???????????????[2,1,3.6]])4 enc=OneHotEncoder(categorical_features=np.array([0,1]),n_values=[3,2])5 enc.fit(data)6 data=enc.transform(data).toarray()7 print(data)

运行结果为

[[ 0. ???1. ???0. ???1. ???0. ???3.25] [ 1. ???0. ???0. ???1. ???0. ???5.2 ] [ 0. ???0. ???1. ???0. ???1. ???3.6 ]]

  categorical_features是需要独热编码的列索引,n_values是对应categorical_features中各列下类别的数目,也就是原来的列拓展出新的列数。注意这里两个值可以不指定,直接使用fit_transform函数也可以,程序将统计各列中类别的多少。但是只对整数有效,对浮点数会转换为整数之后再统计,也就是对于3.5和3.6默认都是3,也就是同一类。如果指定了这两个参数,就要对未转换的数据提出要求,各列必须是以{0,1,2,3,4......}来编码,而不能以{1,10,100,200.........}这种随意的方式来编码。否则会出现数组越界的错误

  

独热编码OneHotEncoder简介

原文地址:http://www.cnblogs.com/sgdd123/p/7767256.html

知识推荐

我的编程学习网——分享web前端后端开发技术知识。 垃圾信息处理邮箱 tousu563@163.com 网站地图
icp备案号 闽ICP备2023006418号-8 不良信息举报平台 互联网安全管理备案 Copyright 2023 www.wodecom.cn All Rights Reserved